首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allicin—diallyl thiosulfinate—is the main biologically active component of freshly crushed garlic. Allicin was synthesized as described elsewhere and was tested for its inhibitory ability against jack bean urease in 20?mM phosphate buffer, pH 7.0 at 22°C. The results indicate that allicin is an enzymatic inactivator. The loss of urease activity was irreversible, time- and concentration dependent and the kinetics of the inactivation was biphasic; each phase, obeyed pseudo-first-order kinetics. The rate constants for inactivation were measured for the fast and slow phases and for several concentrations of allicin. Thiol reagents, and competitive inhibitor (boric acid) protected the enzyme from loss of enzymatic activity. The studies demonstrate that urease inactivation results from the reaction between allicin and the SH-group, situated in the urease active site (Cys592).  相似文献   

2.
The kinetics of heavy metal ions inhibition of jack bean urease was studied by progress curve analysis in a reaction system without enzyme-inhibitor preincubation. The inhibition was found to be biphasic with an initial, small inhibitory phase changing over the time course of 5–10?min into a final linear steady state with a lower velocity. This time-dependent pattern was best described by mechanism B of slow-binding inhibition, involving the rapid formation of an EI complex that subsequently undergoes slow conversion to a more stable EI* complex. The kinetic parameters of the process, the inhibition constants Ki and Ki* and the forward k5 and reverse k6 rate constants for the conversion, were evaluated from the reaction progress curves by nonlinear regression treatment. Based on the values of the overall inhibition constant Ki*, the heavy metal ions were found to inhibit urease in the following decreasing order: Hg2+ >?Cu2+ >?Zn2+ >?Cd2+ >?Ni2+ >?Pb2+ >?Co2+ >?Fe3+ >?As3+. With the Ki* values as low as 1.9?nM for Hg2+ and 7.1?nM for Cu2+, 100–1000 times lower than those of the other ions, urease may be utilized as a bioindicator of the trace levels of these ions in environmental monitoring, bioprocess control or pharmaceutical analysis.  相似文献   

3.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of K i =0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of K*i=4.5 × 10 ?5 mM. The respective inhibition constants for DMBQ were K i =0.42 mM, K*i =1.2 × 10 ?3 mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 × 10 ?5 mM for BQ and 0.98 × 10 ?3 mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

4.
N-(n-butyl)thiophosphorictriamide (NBPT) and its oxygen analogue N-(n-butyl)phosphorictriamide (NBPTO) were studied as inhibitors of jack bean urease. NBPTO was obtained by spontaneous conversion of NBPT into NBPTO. The conversion under laboratory conditions was slow and did not affect NBPT studies. The mechanisms of NBPT and NBPTO inhibition were determined by analysis of the reaction progress curves in the presence of different inhibitor concentrations. The obtained plots were time-dependent and characteristic of slow-binding inhibition. The effects of different concentration of NBPT and NBPTO on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships for a one-step enzyme-inhibitor interaction, qualified as mechanism A. The inhibition constants of urease by NBPT and NBPTO were found to be 0.15 μM and 2.1 nM, respectively. The inhibition constant for NBPT was also calculated by steady-state analysis and was found to be 0.13 μM. NBPTO was found to be a very strong inhibitor of urease in contrast to NBPT.  相似文献   

5.
Structural and functional characteristics of jack bean urease (JBU), a hexameric enzyme having identical subunits, were investigated under neutral as well as acidic conditions by using CD, fluorescence, ANS binding and enzyme activity measurements. At low pH and low ionic strength, JBU exists in a partially unfolded state (UA-state), having predominantly β structure and no tertiary interactions along with a strong ANS binding. Addition of salts like NaCl, KCl and Na2SO4 to the UA-state induces refolding resulting in structural propensities similar to that of native hexamer. Moreover, at low concentrations, GuHCl behaves like an anion by inducing refolding of the UA-state. The anion-induced refolded state (IA-state) is more stable than UA-state and the stability is nearly equal to that of the native protein against chemical-induced and thermal denaturation. Overall, these observations support a model of protein folding for a multimeric protein where certain conformations (ensembles of substates) of low energy prevail and populated under non-native conditions with different stability.  相似文献   

6.
A peptidase was purified from seeds of Canavalia ensiformis by extraction with water, ammonium sulfate precipitation, and successive chromatographies on DEAE-Toyopearl 650M, butyl-Toyopearl 650M, and G-3000 SW columns. The enzyme has an apparent molecular weight of 41,000. Activity is maximal at pH 9 and 60°C. The enzyme hydrolyzed synthetic substrates at Arg-X and Lys-X bonds more rapidly than bovine trypsin did, and did not cleave protein or ester substrates. The enzyme was inhibited by alkylamines and several serine protease inhibitors such as diisopropylfluorophosphate, chymostatin, leupeptin, and benzamidine. Cysteine protease-, metalloprotease-, and proteinous trypsin inhibitors were ineffective. Inhibition by alkylamines was dependent on length of the alkyl chains. From the substrate specificity and susceptibility to chemicals, the enzyme is a unique peptidase with trypsin-like specificity.  相似文献   

7.
The indolizidine alkaloid, swainsonine, was previously shown to be a potent inhibitor of lysosomal and jack bean α-mannosidase (Dorling, Huxtable, Colegate 1980 Biochem J 191: 649-651). We examined the effects of various concentrations of this alkaloid on a number of commercially available glycosidases and found swainsonine to be quite specific for α-mannosidase (50% inhibition at 1-5 × 10−7 molar). Optimum inhibition was observed after a 2-minute preincubation of enzyme and inhibitor. Lineweaver-Burk plots of substrate concentration versus velocity in the presence of various amounts of swainsonine showed considerable curvature at high substrate concentrations, suggesting that swainsonine may be a competitive inhibitor that binds tightly to the enzyme and is only slowly removed. Periodate oxidation of swainsonine completely destroyed its inhibitory activity.  相似文献   

8.
The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski’s rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.  相似文献   

9.
Urease, a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi. It catalyzes the hydrolysis of urea into ammonia and carbon dioxide. Although the amino acid sequences of plant and bacterial ureases are closely related, some biological activities differ significantly. Plant ureases but not bacterial ureases possess insecticidal properties independent of its ureolytic activity. To date, the structural information is available only for bacterial ureases although the jack bean urease (Canavalia ensiformis; JBU), the best-studied plant urease, was the first enzyme to be crystallized in 1926. To better understand the biological properties of plant ureases including the mechanism of insecticidal activity, we initiated the structural studies on some of them. Here, we report the crystal structure of JBU, the first plant urease structure, at 2.05 Å resolution. The active-site architecture of JBU is similar to that of bacterial ureases containing a bi-nickel center. JBU has a bound phosphate and covalently modified residue (Cys592) by β-mercaptoethanol at its active site, and the concomitant binding of multiple inhibitors (phosphate and β-mercaptoethanol) is not observed so far in bacterial ureases. By correlating the structural information of JBU with the available biophysical and biochemical data on insecticidal properties of plant ureases, we hypothesize that the amphipathic β-hairpin located in the entomotoxic peptide region of plant ureases might form a membrane insertion β-barrel as found in β-pore-forming toxins.  相似文献   

10.
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones.  相似文献   

11.
Overlapping decapeptide fragments of H. pylori urease subunit A (UreA) were synthesized and tested with polyclonal antibodies against Canavalia ensiformis (Jack bean) urease. The linear epitopes of UreA identified using the dot blot method were then examined using epitope mapping. For this purpose, series of overlapping fragments of UreA, frameshifted ± four amino acid residues were synthesized. Most of the UreA epitopes which reacted with the Jack bean urease polyclonal antibodies had been recognized in previous studies by monoclonal antibodies against H. pylori urease. Fragments 11 – 24, 21 – 33, and 31 – 42 were able to interact with the Jack bean urease antibodies, giving stable immunological complexes. However, the lack of recognition by these antibodies of all the components in the peptide map strongly suggests that a non‐continuous (nonlinear) epitope is located on the N‐terminal domain of UreA.  相似文献   

12.
1.氢醌对土壤脲酶活性的抑制率及其持续的时间同氢醌浓度成正相关,与土壤脲酶活性成负相关。2.氢醌能有效地抑制施入土壤中尿素氨的挥发,而对铵盐和尿素的硝化强度产生强烈抑制。3.在麦秸还田土壤中,由于脲酶活性增高而提高了施入尿素的水解速度,故需提高氢醌用量;但由于麦秸的“氮因子效应”又固定了尿素分解产物及其氧化产物,从而弥补了氢醌失效后可能造成氮素的继续损失。  相似文献   

13.
目的:幽门螺旋杆菌(Hp)尿素酶是Hp重要的定制因子和致病因子,Hp尿素酶活性位点位于Hp尿素酶B亚基(UreB),研发基于UreB的Hp疫苗是一种很有前景的防治Hp感染的策略。方法:主要利用基因克隆技术从幽门螺旋杆菌标准菌株SS1(Hp SS1)获得Hp尿素酶B亚基基因,并构建含有重组Hp尿素酶B亚基(rUreB)基因的重组表达载体pET-rUreB及其重组菌株;重组菌株经蛋白表达和优化后,利用Ni-NTP镍离子亲和层析和DEAE Sepharose FF阴离子交换层析纯化重组尿素酶B亚基(rUreB),并进一步通过腹腔注射免疫BALB/c小鼠,研究rUreB的免疫学性质。结果:通过基因克隆技术成功获得了Hp尿素酶B亚基基因,并成功构建了重组表达载体pET-rUreB及其重组菌株BL21(DE3)/pET-rUreB,经蛋白表达优化及纯化,可获得高纯度(96.5%)的重组蛋白rUreB。重组蛋白rUreB辅以弗氏佐剂腹腔注射免疫BALB/c小鼠,经间接ELISA鉴定小鼠能够产生针对天然Hp尿素酶和UreB的高滴度特异性抗体,且能够显著性抑制Hp尿素酶的活性。结论:重组Hp尿素酶B亚基能够在大肠杆菌表达系统中获得较高水平的表达,具有较高的免疫学特异性,其抗体能够有效抑制Hp尿素酶活性。为研究基于尿素酶的防治Hp感染的Hp疫苗奠定了一定的实验基础。  相似文献   

14.
15.
Urease from jack bean meal and hydrated seeds has been obtained in 25 to 33% yield with specific activity in the range of 1000 to 1070 units/mg protein. A purification of 100 to 130-fold was achieved from meal and fully soaked seeds. Use of β-mercaptoethanol and EDTA was found essential to obtain this high yield and purity. Amino acid analysis showed all 18 amino acids commonly found in proteins. Electrophoresis of urease from soaked seeds (specific activity: 1025 units/mg protein) on a starch-gel block showed 2 peaks. Upon ultracentrifugation of urease samples having a low specific activity (less than 25% pure), the major portion of the urease was probably present in a peak having a sedimentation value of 11 to 12. With relatively pure samples (55-100% pure). S values in the range of 18 to 20 and 24 to 26 were obtained. Usually the purest samples of urease tested without any prior storage lacked the 24 to 26 S peak or the higher polymeric forms. The percentage areas under none of the ultracentrifuge peaks corresponded to the percentage purity of the sample analyzed. It is argued that the physical state of urease in the cell when associated with other seed proteins is as yet uncertain. In crude extracts, a portion of urease exists in a 12 S form but so far data on its origin and specific activity in relation to other species of urease are not available.  相似文献   

16.
幽门螺杆菌尿素酶抗原的分离及纯化   总被引:1,自引:1,他引:1  
本实验采用新型离了交换剂Sourece Q15为分离介质,用氯化钠盐浓度梯度洗脱法,从幽门螺杆菌超声处理上清液中纯化了幽累相菌尿毒酶抗原,所得纯化物经SDS-PAGE电泳分析证明具有良好的纯度,只含有分子量为66000及29500两种蛋白成分,与幽门螺杆菌两种亚基的大小安全相同。以此纯化尿素酶为抗原用于ELISA检测临床确诊的幽门螺杆菌感染者血清12全水感染幽门螺杆者血清18例,其ELISA阳性及  相似文献   

17.
Summary The effect on soil urease activity of five aminocresols, at concentrations of 5–100 g/g soil, was examined in the laboratory. Two compounds, 4-amino-o-cresol and 4-amino-m-cresol, significantly inhibited urease activity. The efficacy of 4-amino-o-cresol was compared with that of phenylphosphorodiamidate (PPDA), a known inhibitor, in three U.K. soils. At 50g/g soil 4-amino-o-cresol was as inhibitory as an equivalent concentration of PPDA in a soil with low urease activity, but was less inhibitory in two soils with high urease activity.  相似文献   

18.
The current research article reports the synthesis of coumarinyl pyrazolinyl thioamide derivatives and their biological activity as inhibitors of jack bean urease. The coumarinyl pyrazolinyl thioamides were synthesized by reacting thiosemicarbazide with newly synthesized chalcones to afford the products in good yields and the synthesized compounds were purified by recrystallization. Coumarinyl pyrazolinyl thioamide derivatives 5a  –  5q showed significant activity against Urease enzyme and also exhibited good antioxidant potential. The compound 3‐(2‐oxo‐2H‐chromen‐3‐yl)‐5‐phenyl‐4,5‐dihydro‐1H‐pyrazole‐1‐carbothioamide ( 5n ) was found to be superior agent in the series with an IC50 = 0.358 ± 0.017 μm compared to standard thiourea with an IC50 = 4720 ± 174 μm . To undermine the binding mode of inhibition kinetic studies were performed for most potent derivative and it was found that compound 5n inhibits urease enzyme by non‐competitive mode of inhibition. Molecular docking studies were carried out to delineate the binding affinity of the synthesized derivatives.  相似文献   

19.
Mannich bases consisting of 1,3,4-oxadiazole-2-thione ( 3 a – 3 l ) bearing various substituents were synthesized and found potent jack bean urease inhibitors. The prepared compounds showed significantly good inhibitory activities with IC50 values from 9.45±0.05 to 267.42±0.23 μM. The compound 3 k containing 4-chlorophenyl (−R) and 4-hydroxyphenyl (−R′) was most active with IC50 9.45±0.05 μM followed by 3 e (IC50 22.52±0.15 μM) in which −R was phenyl and −R′ was isopropyl group. However, when both −R and −R′ were either 4-chlorophenyl groups ( 3 l ) or only −R′ was 4-nitrophenyl ( 3 i ), both compounds were found inactive. The detailed binding affinities of the produced compounds with protein were explored through molecular docking and data-supported in-vitro enzyme inhibition profiles. Drug likeness was confirmed by in silico ADME investigations and molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps were got from DFT calculations. ESP maps exposed that there are two potential binding sites with the most positive and most negative parts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号