首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 microM), GST P1-1 by sulphinpyrazone (IC50 = 66 microM), GST Al-1 by sulphasalazine, and camptothecin (34 and 74 microM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 microM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 microM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   

2.
Cytosolic glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitro-benzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-(p-nitrophenoxyl)propane (EPNP), trans-4-phenyl-3-buten-2-one (t-PBO), δ3-androstene-3,17-dione (ASD) and trans-stilbene oxide (t-SO); cytosolic glutathione peroxidase activity toward cumene hydroperoxide (CuOOH); and microsomal GST activity toward CDNB were examined in liver, kidney, brain, and lung of adult male and female Japanese quail. In all cases, the renal specific activity per milligram protein was higher than the hepatic activity and was the highest among the four tissues examined. No consistent sex differences in GST activity were observed. The GSTs were purified from quail liver cytosol by S-hexylglutathione and glutathione affinity chromatography. Total GSTs eluted from the S-hexylglutathione affinity column were further separated by chromatofocusing, and the microheterogeneity of the GST isozymes was shown by high-resolution native isoelectrofocusing (IEF) in polyacrylamide slab gels and by SDS-PAGE. Five subunits were identified: QL1 (30.5 kDa), QL2 (27.2 kDa), QL3a (26.8 kDa), QL3b (26.5 kDa), and QL4 (25.5 kDa). Western blot analysis revealed that QL1 and QL2 reacted with antibodies raised against the rat Mu class GSTs (Yb1 and Yb2), and QL3a and QL3b reacted with those raised against the Alpha class (rat Ya and mouse a). Substrate specific activity of each isoform was determined with CDNB, DCNB, CuOOH, EA, t-PBO, ASD, and t-SO. QL3a and QL3b have high reactivity toward CuOOH, while QL1 and QL2 showed high activity toward t-SO. The N-terminal amino acid sequence of QL2 was identical to that of the chicken Mu class GST subunit CL2. However, no sequence was obtained with QL1 due to possible N-terminal blockage. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Elevated glutathione transferase (GST) E2 activity is associated with DDT resistance in the mosquito Anopheles gambiae. The search for chemomodulators that inhibit the function of AgGSTE2 would enhance the insecticidal activity of DDT. Therefore, we examined the interaction of novel natural plant products with heterologously expressed An. gambiae GSTE 2 in vitro. Five of the ten compounds, epiphyllocoumarin (Tral-1), knipholone anthrone, isofuranonaphthoquinones (Mr 13/2, Mr13/4) and the polyprenylated benzophenone (GG1) were shown to be potent inhibitors of AgGSTE2 with IC50 values of 1.5 μM, 3.5 μM, 4 μM, 4.3 μM and 4.8 μM respectively. Non-competitive inhibition was obtained for Tral 1 and GG1 with regards to GSH (Ki of 0.24 μM and 0.14 μM respectively). Competitive inhibition for Tral1 was obtained with CDNB (Ki = 0.4 μM) whilst GG1 produced mixed type of inhibition. The Ki and Ki' for GSH for Tral-1 and GG1 were 0.2 μM and 0.1 μM respectively. These results suggest that the novel natural plant products, particularly Tral-1, represent potent AgGSTE2 in vitro inhibitors.  相似文献   

4.
A novel automated method based on sequential injection analysis (SIA), a non-segmented flow injection technique, was developed to evaluate glutathione S-transferase P1-1 (GST P1-1) activity in the presence of organometallic complexes with putative anticancer activity. The assay is based on the reaction of L-glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) in the presence of GST P1-1 to afford the GS-DNB conjugate and the reaction may be monitored by an increase in absorbance at 340 nm. A series of ruthenium, iron, osmium and iridium complexes were evaluated as GST P1-1 inhibitors by evaluating their half-maximal inhibitory concentration (IC50). An iridium compound displays the lowest IC50 value of 6.7 ± 0.7 µM and an iron compound displays the highest IC50 value of 275 ± 9 µM. The SIA method is simple to use, robust, reliable, and efficient and uses fewer reagents than batch methods and each analysis takes only 5 minutes.  相似文献   

5.
Drug resistance tuberculosis is one of the challenging tasks that dictates the desperate need for the development of new antitubercular agents which operate via novel modes of action. Here, we are reporting on 4‐aminoquinazolines as M. tuberculosis N‐acetylglucosamine‐1‐phosphate uridyltransferase (GlmUMTB) inhibitors to overcome the problem of the MDR‐TB. Amongst the synthesized compounds, two of them were observed to be the effective compounds of the series (IC50=6.4 μM (H37Rv), MIC=25 μM (MDR‐TB) and IC50=2.9 μM (H37Rv), MIC=6.25 μM (MDR‐TB), respectively).  相似文献   

6.
A glutathione transferase (PfGST) isolated from Plasmodium falciparum has been associated with chloroquine resistance. A range of natural products including malagashanine (MG) were screened for inhibition of PfGST by a GST assay with 1-chloro-2,4-dinitrobenzene as a substrate. Only the sesquiterpene (JBC 42C), the bicoumarin (Tral-1), ellagic acid and curcumin, were shown to be potent inhibitors of PfGST with IC50 values of 8.5, 12, 50 and 69 μM, respectively. Kinetic studies were performed on PfGST using ellagic acid as an inhibitor. Uncompetitive and mixed types of inhibition were obtained for glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB). The Ki for GSH and CDNB were ?0.015?μM and 0.011?μM, respectively. Malagashanine (100?µM) only reduced the activity of PfGST to 80% but showed a time-dependent inactivation of PfGST with a t1/2 of 34 minutes compared to >120 minutes in the absence of MG or in the presence of 5?mM GSH. This work facilitates the understanding of the interaction of PfGST with some plant derived compounds.  相似文献   

7.
Glutathione transferase P1-1 is over expressed in some cancer cells and contributes to detoxification of anticancer drugs, leading to drug-resistant tumors. The inhibition of human recombinant GSTP1-1 by natural plant products was investigated using 10 compounds isolated from plants indigenous to Southern and Central Africa. Monochlorobimane and 1-chloro-2,4-dinitrobenzene were used to determine GST activity. Each test compound was screened at 33 and 100 µM. Isofuranonapthoquinone (1) (from Bulbine frutescens) showed 68% inhibition at 33 µM, and sesquiterpene lactone (2) (from Dicoma anomala) showed 75% inhibition at 33 μM. The IC50 value of 1 was 6.8 μM. The mode of inhibition was mixed, partial (G site) and noncompetitive (H site) with Ki values of 8.8 and 0.21 µM, respectively. Sesquiterpene 2 did not inhibit the CDNB reaction. Therefore, isofuranonapthoquinone 1 needs further investigations in vivo because of its potent inhibition of GSTP1-1 in vitro.  相似文献   

8.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

9.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

10.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

11.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

12.
Glutathione transferases (GSTs) are essential enzymes in many organisms due their diverse functions and, in helminths they are the main detoxification system. For Taenia solium, two cytosolic GSTs with molecular masses of 25.5 and 26.5 kDa (Ts26GST) have been found. Ts26GST was cloned to be studied in its recombinant form (recTs26GST). Although the primary structure is related to the mu class, the kinetic parameters for CDNB (Vmax = 51.5 μmol min−1 mg−1; Km = 1.06 mM; kcat = 22.2 s−1) are related with some alpha GSTs. The substrate and inhibitor class markers reaffirmed these bimodal characteristics. Inhibition studies with anthelminthics indicate that recTs26GST is sensitive to mebendazole, displaying a non competitive inhibition pattern suggesting that at least two molecules are binding to recTs26GST. On the other hand, the kinetic curves for CDNB and GSH showed a positive cooperativity that was corroborated using fluorometric assays. Those assays indicate that CDNB binding is highly influenced by GSH, probably by modulation of the Ts26GST conformational ensamble.  相似文献   

13.
Glutathione S-transferases (GSTs) are multi-functional enzymes, known to conjugate xenobiotics and degrade peroxides. Herein, we report on the potential of four Zea mays GST isoforms (Zm GST I–I, Zm GST I–II, Zm GST II–II and Zm GST III–III) to act as binding and protection proteins. These isoforms bind protoporphyrin IX (PPIX), mesoporphyrin, coproporphyrin, uroporphyrin and Mg-protoporpyhrin, but do not form a glutathione conjugate. The binding is non-covalent and inhibits GSTs enzymatic activity, dependent on the type of the porphyrin and GST isoform tested. I50 values are in the range of 1 to 10 μM for PPIX, the inhibition by mesoporphyrin and Mg-protoporphyrin (Mg-PPIX) is two to five times less. The mode of binding is non-competitive for the hydrophobic substrate and competitive for glutathione. Binding affinities (KD values) of the GST isoforms are between 0.3 and 0.8 μM for coproporphyrin and about 2 μM for mesoporphyrin.Zm GST III–III prevents the nonenzymatic autoxidation of protoporphyrinogen to the phytotoxic PPIX. Zm GST II–II can reduce the oxidative degradation of hemin. This points to a specific ligand role of distinct GST isoforms to protect tetrapyrroles in the plant cell.  相似文献   

14.
Glutathione S-transferases (GSTs) are cytosolic enzymes that catalyze the conjugation of glutathione with a variety of exogenous and endogenous electrophiles. High affinity, isozyme-specific inhibitors of GST are required for use as pharmacological tools as well as potential therapeutics. The design of selective inhibitors is hindered due to the broad substrate binding capabilities of the GST enzymes. GSTs are dimeric enzymes, and therefore offer a unique discriminator for achieving inhibitor selectivity: the distance between binding sites on each monomer unit as a function of its quaternary organization. Bivalent analogs of the non-selective GST inhibitor ethacrynic acid were prepared, and selectivity for the GST A1-1 isozyme over GST P1-1 (IC50 values of 13.7 vs 1022 nM, respectively) was achieved through the optimization of the spacer length between the ethacrynic acid ligand domains.  相似文献   

15.
A series of 1, 3-dialkylxanthines was examined as antagonists of adenosine-induced accumulation of cyclic AMP in guinea pig cerebral cortical slices and as inhibitors of brain phosphodiesterases. The order of potency as adenosine-antagonists was: 8-phenyltheophylline (IC50 6 μM) > 1, 3-dibutylxanthine (IC50 30 μM), 1, 3-dipropylxanthine > theophylline (IC50 60 μM), 3-isobutyl-1-methylxanthine (IBMX), 1, 3, 7-triethylxanthine > 7-benzyl IBMX (IC50 100 μM), 8-methyl IBMX > 7-benzyl-8-bromo IBMX, 9-methyl IBMX, 8-bromo IBMX, 1-isoamyl-3-isobutylxanthine. The order of potency as inhibitors of brain calcium-dependent phosphodiesterase was: 7-benzyl IBMX (IC50 1.5 μM), 7-benzyl-8-bromo IBMX > 8-methyl IBMX (IC50 4.5 μM) > IBMX (IC50 7.5 μM), 8-bromo IBMX > 9-methyl IBMX (IC50 40 μM), 1, 3, 7-triethylxanthine > 1, 3-dibutylxanthine (IC50 100 μM), 1-isoamyl-3-isobutylxanthine > theophylline. 8-Phenyltheophylline and 1, 3-dibutylxanthine represented potent adenosine-antagonists with relatively low activity as phosphodiesterase inhibitors whereas 7-benzyl IBMX and 7-benzyl-8-bromo-IBMX were potent inhibitors of the calcium-dependent phosphodiesterase with relatively low activity as adenosine-antagonists. None of the compounds were potent inhibitors of the brain calcium-independent phosphodiesterase, although 1-isoamyl-3-isobutylxanthine might prove useful as an inhibitor of this enzyme because of its very low activity as an adenosine-antagonist.  相似文献   

16.
A series of 1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives 125 was synthesized and characterized by spectroscopic techniques such as EI-MS and 1H NMR. All compounds were screened for urease inhibitory activity in vitro and demonstrated excellent inhibitory activity in the range of IC50 = 0.32 ± 0.01–25.13 ± 0.13 μM as compared to the standard thiourea (IC50 = 21.25 ± 0.13 μM). Amongst the potent analogs, compounds 3 (IC50 = 2.31 ± 0.01 μM), 6 (IC50 = 2.14 ± 0.04 μM), 10 (IC50 = 1.14 ± 0.06 μM), 20 (IC50 = 2.15 ± 0.05 μM), and 25 (IC50 = 0.32 ± 0.01 μM) are many folds more active than the standard. Structure-activity relationship (SAR) was rationalized by looking at the effect of diversely substituted aryl ring on inhibitory potential which predicted that regardless of the nature of substituents, their positions on aryl ring is worth important for the potent activity. Furthermore, to verify these interpretations, in silico study was performed on all compounds and a good correlation was perceived between the biological evaluation and docking study of compounds.  相似文献   

17.
The glutathione transferase (GST) activity of rat liver cytosolic preparations with ethacrynic acid (EA) and (±)-7β,8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydro-benzo(a)pyrene (BPDE) as substrates, increased by 125 and 350%, respectively, in animals that had been treated with a single intravenous dose of Pb(NO3)2 (100 μmol/kg body wt) 48 h prior to sacrifice, whereas activity with 1-chloro-2,4-dinitro-benzene (CDNB) increased only about 60%. No induction of these activities was observed in cytosolic preparations from regenerating rat liver, whereas cytosols prepared from hepatocyte nodules showed increased activity with all three substrates (EA: 400%; BPDE: 790%; CDNB: 205%). These results suggest that Pb(NO3)2 is an inducer of GST 7-7, an isoenzyme that has been associated with hepatocarcinogenesis. Elucidation of the mechanism of GST 7-7 induction by lead may contribute to our understanding of the process of chemical carcinogenesis.  相似文献   

18.
Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8 kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA). However, none of the GSTM proteins had AFBO detoxification capability, in contrast to recombinant alpha-class GSTs shown in our recent study to possess this important activity. In total, our data indicate that although turkey hepatic GSTMs may contribute to xenobiotic detoxification, they probably play no role in detoxification of AFBO in the liver.  相似文献   

19.
Twenty-five thiadiazole derivatives 125 were synthesized from methyl 4-methoxybenzoate via hydrazide and thio-hydrazide intermediates, and evaluated for their potential against β-glucuronidase enzyme. Most of the compounds including 1 (IC50 = 26.05 ± 0.60 μM), 2 (IC50 = 42.53 ± 0.80 μM), 4 (IC50 = 38.74 ± 0.70 μM), 5 (IC50 = 9.30 ± 0.29 μM), 6 (IC50 = 6.74 ± 0.26 μM), 7 (IC50 = 18.40 ± 0.66 μM), and 15 (IC50 = 18.10 ± 0.53 μM) exhibited superior activity potential than the standard d-saccharic acid-1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interaction with enzyme active site.  相似文献   

20.
Abstract: The toxicological and biochemical characteristics of glutathione S‐transferases (GSTs) in the resistant and susceptible strains of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos‐resistant strain (DDVP‐R) and PH3‐resistant strain (PH3‐R), and the resistance factors were 22.36 and 4.51, respectively. Compared with their susceptible counterparts, the activities per insect and specific activities of GSTs in DDVP‐R and PH3‐R were significantly higher. The apparent Michaelis–Menten constant values (Km) for 1‐chloro‐2,4‐dinitrobenzene (CDNB) were obviously lower in DDVP‐R and PH3‐R (i.e. lower Km values, 1.5625 mm for DDVP‐R and 0.6230 mm for PH3‐R) when compared with their susceptible counterpart (Km = 3.5520), indicating a higher affinity to the substrate CDNB in resistant strains. In contrast, the catalytic activity of GSTs towards CDNB in the susceptible strain was significantly higher than those in resistant strains. It was noticeable that when reduced glutathione (GSH) was used as substrate, GSTs from resistant strains both indicated a significantly declined affinity. For the catalytic activity of GSTs towards GSH, only the Vmax value in DDVP‐R increased significantly compared with that from the susceptible strain, suggesting an overexpression of GST in this resistant strain. The inhibition kinetics of insecticides to GSTs in vitro revealed that dichlorvos and paraoxon possessed excellent inhibition effects on GSTs. The susceptible strain showed higher sensitivity (I50 = 0.9004 mm ) to dichlorvos than DDVP‐R and PH3‐R (higher I50s, 8.0955 mm for DDVP‐R and 9.3346 mm for PH3‐R). As for paraoxon, there was a similar situation. The resistant strains both suggested a higher I50 (1.8735 mm for DDVP‐R, and 0.4291 mm for PH3‐R) compared with the susceptible strain (0.2943 mm ). These suggested that an elevated detoxification ability of GSTs developed in the resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号