首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human and murine lanosterol synthases (EC 5.4.99.7) were studied as targets of a series of umbelliferone aminoalkyl derivatives previously tested as inhibitors of oxidosqualene cyclases from other eukaryotes. Tests were carried out on cell cultures of human keratinocytes and mouse 3T3 fibroblasts incubated with radiolabeled acetate, and on homogenates prepared from yeast cells expressing human lanosterol synthase, incubated with radiolabeled oxidosqualene. In cell cultures of both human keratinocytes and mouse 3T3 fibroblasts, the observed inhibition of cholesterol biosynthesis was selective for oxidosqualene cyclase. The most active compounds bear an allylmethylamino chain in position-7 of the coumarin ring. The inhibition was critically dependent on the position and length of the inhibitor side chain, as well as on the type of aminoalkyl group inserted at the end of the same chain. Molecular docking analyses, carried out to clarify details of inhibitors/enzyme interactions, proved useful to explain the observed differences in inhibitory activities.  相似文献   

2.
Molecular docking is routinely used for understanding drug‐receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literature to DHFR and studied their specific interactions with DHFR. A new shape-based method, LigandFit, was used for docking DMDP derivatives into DHFR active sites. The result indicates that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.499) for the 73 compounds between docking score and IC50 values (Inhibitory Activity). The chloro substituted naphthyl ring of compound 63 makes significant hydrophobic contact with Leu 22, Phe 31 and Pro 61 of the DHFR active site leading to enhanced inhibition of the enzyme. The docked complexes provide better insights to design more potent DHFR inhibitors prior to their synthesis.  相似文献   

3.
In this study, 22 new betulinic acid (BA) derivatives were synthesized and tested for their inhibition of the chymotrypsin-like activity of 20S proteasome. From the SAR study, we concluded that the C-3 and C-30 positions are the pharmacophores for increasing the proteasome inhibition effects, and larger lipophilic or aromatic side chains are favored at these positions. Among the BA derivatives tested, compounds 13, 20, and 21 showed the best proteasome inhibition activity with IC(50) values of 1.42, 1.56, and 1.80 μM, respectively, which are three to fourfold more potent than the proteasome inhibition controls LLM-F and lactacystin.  相似文献   

4.
The inhibitory efficacy of two substituted coumarin derivatives on the activity of neurodegenerative enzyme acetylcholinesterase (AChE) was assessed in aqueous buffer as well as in the presence of human serum albumin (HSA) and compared against standard cholinergic AD drug, Donepezil (DON). The experimental data revealed the inhibition to be of non-competitive type with both the systems showing substantial inhibitory activity on AChE. In fact, one of the tested compounds Chromenyl Coumarate (CC) was found to be better inhibitor (IC50 = 48.49 ± 5.6 nM) than the reference drug DON (IC50 = 74.13 ± 8.3 nM), unequivocally amplifying its importance. The structure of the compound was found to play a vital role in the inhibitory efficiency, validating previous Structure Activity Relationship (SAR) reviews for coumarin. The mechanism of inhibition remained impervious when the experimental medium was switched from aqueous buffer to HSA, albeit noticeable change in the inhibition potency of the compound 3, 3′- Methylene-bis (4-hydroxy coumarin) (MHC) (38%) and CC (35%). Both the coumarin derivatives were observed to bind to the peripheral anionic site (PAS) of AChE and also found to displace the fluorescence marker thioflavinT (ThT) from AChE binding pocket. All experimental observations were seconded by molecular docking and MD simulation results. The inferences drawn in this study form a foundation for further investigation on these compounds; magnifying the probability of their usage as AD drugs and re-emphasizes the significance of drug delivery media while considering the inhibition potencies of targeted drugs.  相似文献   

5.
Human acrosin is an attractive target for the discovery of novel male contraceptives. Isoxazole derivative ISO-1, a small-molecule weak human acrosin inhibitor, was used as the starting point for lead optimization. After two rounds of structure-based inhibitor design, a highly potent inhibitor B6 (IC50 = 1.44 μM) was successfully identified, which showed good selectivity over trypsin and represents one of the most active human acrosin inhibitors up to date.  相似文献   

6.
2,3-Dihydro-2-azasqualene, its N-oxide and its N,N-diethyl analogue, as well as 2,3-dihydro-2,3-iminosqualene are potent inhibitors of the squalene to hopanoid (diplotene and diplopterol) cyclases in cell-free systems from Acetobacter pasteurianus ssp pasteurianus, Methylobacterium organophilum and Zymomonas mobilis. The inhibitory concentration giving 50% inhibition at a 120 M squalene concentration was determined in each cases. The growth of hopanoid producing prokaryotes (with the exception of Acetobacter pasteurianus ssp pasteurianus and Pseudomonas syringae probably capable of degrading the drugs) was inhibited by these squalene analogues at concentrations in the M range, whereas the growth of hopanoid non-producers was not affected at the highest tested concentration (200 M). Thus hopanoids which have been shown to possess similar properties to those of sterols in membrane reinforcement are probably essential for the cells producing them. Furthermore, all tested hopanoid producers are very sensitive to trimethyloctadecyl ammonium bromide which does not inhibit the squalene to hopane cyclases at a 50 M concentration, and do not grow after 24 h in its presence at a 1 M minimal inhibitory concentration. Growth of hopanoid non-producers was however not affected by this ammonium salt (highest tested concentration: 200 M). The mode of action of this cationic detergent is still unknown, but might be related to specific desorganization of hopanoid containing membranes.Abbreviation TLC thin layer chromatography  相似文献   

7.
A series of 1,6-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). By varying the basic amine side chain at the 1-position of the indole ring, several potent and selective inhibitors of human neuronal NOS were identified. In general compounds with bulkier side chains displayed increased selectivity for nNOS over eNOS and iNOS isoforms. One of the compounds, (R)-8 was shown to reduce tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in an in vivo rat model of dural inflammation relevant to migraine pain.  相似文献   

8.
A series of 1,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase. A variety of flexible and restricted basic amine side chain substitutions was explored at the 1-position of the indole ring, while keeping the amidine group fixed at the 5-position. Compounds having N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- (12, (R)-12, (S)-12 and 13) and N-(1-(1-methylazepan-4-yl)- side chains (14, 15, (-)-15 and (+)-15) showed increased inhibitory activity for the human nNOS isoform and selectivity over eNOS and iNOS isoforms. The most potent compound of the series for human nNOS (IC(50)=0.02 μM) (S)-12 showed very good selectivity over the eNOS (eNOS/nNOS=96-fold) and iNOS (iNOS/nNOS=850-fold) isoforms.  相似文献   

9.
A novel, non-acid series of nitroquinoxalinone derivatives was synthesized and tested for their inhibitory activity against aldose reductase as targeting enzyme. All active compounds displayed an 8-nitro group, and showed significant activity in IC50 values ranging from 1.54 to 18.17 μM. Among them 6,7-dichloro-5,8-dinitro-3-phenoxyquinoxalin-2(1H)-one (7e), exhibited the strongest aldose reductase activity with an IC50 value of 1.54 μM and a good SAR (structure–activity relationship) profile.  相似文献   

10.
The cure for Alzheimer''s disease (AD) is still unknown. According to Cholinergic hypothesis, Alzheimer''s disease is caused by the reduced synthesis of the neurotransmitter, Acetylcholine. Regional cerebral blood flow can be increased in patients with Alzheimer''s disease by Acetylcholinesterase (AChE) inhibitors. In this regard, Tetraphenylporphinesulfonate (TPPS), 5,10,15,20- Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinatoIron(III) nitrosyl Chloride (FeNOTPPS) were investigated as candidate compounds for inhibition of Acteylcholinesterase of Drosophila melanogaster (DmAChE) by use of Molecular Docking. The results show that FeNOTPPS forms the most stable complex with DmAChE.  相似文献   

11.
12.
A series of novel pyrrolopyridazine derivatives have been discovered to be HER-2 inhibitors. These compounds selectively inhibited HER-2 kinase activity at low nanomolar concentrations. Compound 7d was identified as a potent HER-2 inhibitor with an IC50 of 4 nM.  相似文献   

13.
The 90 kDa ribosomal S6 kinases (RSKs), especially RSK2, have attracted attention for the development of new anticancer agents. Through structural optimization of the hit compound 1 from our previous study, a series of barbituric acid aryl hydrazone analogues were designed and synthesized as potential RSK2 inhibitors. The most potent one, compound 9, showed a higher activity against RSK2 with an IC50 value of 1.95 μM. To analyze and elucidate their structure-activity relationship, the homology model of RSK2 N-terminal kinase domain was built and molecular docking simulations were performed, which provide helpful clues to design new inhibitors with desired activities.  相似文献   

14.
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60?μM for AChE; 5.92?μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.  相似文献   

15.
A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36?±?0.27?µM, 1.25?±?0. 23?µM, 2.31?±?0.41?µM, 2.14?±?0.36?µM and 1.85?±?0.32?µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.  相似文献   

16.
A series of twenty new chlorophenoxyalkylamine derivatives (928) was synthesized and evaluated on their binding properties at the human histamine H3 receptor (hH3R). The spacer alkyl chain contained five to seven carbon atoms. The highest affinities have shown the 4-chloro substituted derivatives 10 and 25 (Ki = 133 and 128 nM, respectively) classified as antagonists in cAMP accumulation assay (EC50 = 72 and 75 nM, respectively). Synthesized compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Two compounds (4-chloro substituted derivatives: 20 and 26) were the most promising and showed in the MES seizure model in rats (after ip administration) ED50 values of 14 mg/kg and 13.18 mg/kg, respectively. Protective indexes (PI = TD50/ED50) were 3.2 for 20 and 3.8 for 26. Moreover, molecular modeling and docking studies were undertaken to explain affinity at hH3R of target compounds, and the experimentally and in silico estimation of properties like lipophilicity and metabolism was performed. Antiproliferative effects have been also investigated in vitro for selected compounds (10 and 25). These compounds neither possessed significant antiproliferative and antitumor activity, nor modulated CYP3A4 activity up to concentration of 10 μM.  相似文献   

17.
This paper describes our medicinal chemistry efforts on 7-(cyclopentyloxy)-6-methoxy1,2,3,4-tetrahydroisoquinoline scaffold: design, synthesis and biological evaluation using conformational restriction approach and bioisosteric replacement strategy. Biological data revealed that the majority of the synthesized compounds of this series displayed moderate to potent inhibitory activity against PDE4B and strong inhibition of LPS-induced TNFα release. Among them, compound 19 exhibited the strongest inhibition against PDE4B with an IC50 of 0.88?µM and 21 times more potent selectivity toward PDE4B over PDE4D when compared to rolipram. A primary structure-activity relationship study showed that the attachment of CH3O group or CF3O group to the phenyl ring at the para-position was helpful to enhance the inhibitory activity against PDE4B. Moreover, sulfonamide group played a key role in improving the inhibitory activity against PDE4B and subtype selectivity. In addition, the attachment of the additional rigid substituents at the C-3 position of 1,2,3,4-tetrahydroisoquinoline ring was favored to subtype selectivity, which was consistent well with the observed docking simulation.  相似文献   

18.
Abstract

Several (thiazol-2-yl)hydrazone derivatives from 2-, 3- and 4-acetylpyridine were synthesized and tested against human monoamine oxidase (hMAO) A and B enzymes. Most of them had an inhibitory effect in the low micromolar/high nanomolar range, being derivatives of 4-acetylpyridine selective hMAO-B inhibitors also at low nanomolar concentrations. The structure–activity relationship, as confirmed by molecular modeling studies, proved that the pyridine ring linked to the hydrazonic nitrogen and the substituted aryl moiety at C4 of the thiazole conferred the inhibitory effects on hMAO enzymes. Successively, the strongest hMAO-B inhibitors were tested toward acetylcholinesterase (AChE) and the most interesting compound showed activity in the low micromolar range. Our results suggest that this scaffold could be further investigated for its potential multi-targeted role in the discovery of new drugs against the neurodegenerative diseases.  相似文献   

19.
Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli β-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56–6.25 μg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.  相似文献   

20.
Alzheimer’s disease, one of the most common forms of dementia, is a progressive neurodegenerative disorder symptomatically characterized by declines in memory and cognitive abilities. To date, the successful therapeutic strategy to treat AD is maintaining levels of acetylcholine by inhibiting acetylcholinesterase (AChE). In the present study, coumarin derivatives were designed and synthesized as AChE inhibitors based on the lead structure of scopoletin. Of those synthesized, pyrrolidine-substituted coumarins 3b and 3f showed ca. 160-fold higher AChE inhibitory activities than scopoletin. These compounds also ameliorated scopolamine-induced memory deficit in mice when administered orally at the dose of 1 and 2 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号