首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Signaling via the receptor tyrosine kinase CSF1R is thought to play an important role in recruitment and differentiation of tumor-associated macrophages (TAMs). TAMs play pro-tumorigenic roles, including the suppression of anti-tumor immune response, promotion of angiogenesis and tumor cell metastasis. Because of the role of this signaling pathway in the tumor microenvironment, several small molecule CSF1R kinase inhibitors are undergoing clinical evaluation for cancer therapy, either as a single agent or in combination with other cancer therapies, including immune checkpoint inhibitors. Herein we describe our lead optimization effort that resulted in the identification of a potent, cellular active and orally bioavailable bis-amide CSF1R inhibitor. Docking and biochemical analysis allowed the removal of a metabolically labile and poorly permeable methyl piperazine group from an early lead compound. Optimization led to improved metabolic stability and Caco2 permeability, which in turn resulted in good oral bioavailability in mice.  相似文献   

2.
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a vital role in tumor immune escape and has emerged as a promising target for cancer immunotherapy. In this study, a novel series of 2,5-dimethylfuran-3-carboxylic acid derivatives were designed, synthesized and evaluated for inhibitory activities against IDO1, and their structure-activity relationship was investigated. Among these, compound 19a exhibited excellent IDO1 inhibitory activity (HeLa cellular IC50?=?4.0?nM, THP-1 cellular IC50?=?4.6?nM). Further molecular docking studies revealed that the compound 19a formed a coordinate bond with the heme iron through the carboxylic acid moiety. These results indicate that compound 19a is a potential IDO1 inhibitor for further investigation.  相似文献   

3.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

4.
In this study, different assortments of 2-arylquinolines and 2,6-diarylquinolines have been developed. Recently, we have developed a new series of 6,7-dimethoxy-4-alkoxy-2-arylquinolines as Topoisomerase I (TOP1) inhibitors with potent anticancer activity. Utilising the SAR outputs from this study, we tried to enhance anticancer and TOP1 inhibitory activities. Though target quinolines demonstrated potent antiproliferative effect, specifically against colorectal cancer DLD-1 and HCT-116, they showed weak TOP1 inhibition which may be attributable to their non-coplanarity. Thereafter, screening against kinase panel revealed their dual inhibitory activity against EGFR and FAK. Quinolines 6f, 6h, 6i, and 20f were the most potent EGFR inhibitors (IC50s = 25.39, 20.15, 22.36, and 24.81 nM, respectively). Meanwhile, quinolines 6f, 6h, 6i, 16d, and 20f exerted the best FAK inhibition (IC50s = 22.68, 14.25, 18.36, 17.36, and 15.36 nM, respectively). Finally, molecular modelling was employed to justify the promising EGFR/FAK inhibition. The study outcomes afforded the first reported quinolines with potent EGFR/FAK dual inhibition.  相似文献   

5.
Vascular Adhesion Protein-1 (VAP-1) is a promising therapeutic target for the treatment of several inflammatory-related diseases including diabetic microvascular complication. We identified glycine amide derivative 3 as a novel structure with moderate VAP-1 inhibitory activity. Structure-activity relationship studies of glycine amide derivatives revealed that the tertiary amide moiety is important for stability in rat blood and that the position of substituents on the left phenyl ring plays an important role in VAP-1 inhibitory activity. We also found that low TPSA values and weak basicity are both important for high PAMPA values for glycine amide derivatives. These findings led to the identification of a series of orally active compounds with enhanced VAP-1 inhibitory activity. Of these compounds, 4g exhibited the most potent ex vivo efficacy, with plasma VAP-1 inhibitory activity of 60% after oral administration at 1 mg/kg.  相似文献   

6.
HDAC and CDK inhibitors have been demonstrated to be synergistically in suppressing cancer cell proliferation and inducing apoptosis. In this work, we incorporated the pharmacophore groups of HDACs and CDKs inhibitors into one molecule to design and synthesize a series of purin derivatives as HDAC/CDK dual inhibitors. The lead compound 6d, showing good HDAC1 and CDK2 inhibitory activity with IC50 values of 5.8 and 56 nM, respectively, exhibited attractive potency against several cancer cell lines in vitro. This work may lead to the discovery of a novel scaffold and potential dual HDAC/CDK inhibitors.  相似文献   

7.
Small molecule JAK inhibitors have been demonstrated efficacy in rheumatoid arthritis, inflammatory bowel disease, and psoriasis with the approval of several drugs. Aiming to develop potent JAK1/2 inhibitors, two series of triazolo [1,5-a] pyridine derivatives were designed and synthesized by various strategies. The pharmacological results identified the optimized compounds J-4 and J-6, which exerted high potency against JAK1/2, and selectivity over JAK3 in enzyme assays. Furthermore, J-4 and J-6 effectively suppressed proliferation of JAK1/2 high-expression BaF3 cells accompanied with acceptable metabolic stability in liver microsomes. Therefore, J-4 and J-6 might serve as promising JAK1/2 inhibitors for further investigation.  相似文献   

8.
Novel tolmetin derivatives 5a–f to 8a–c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.  相似文献   

9.
3-Amido-4-anilinocinnolines have been identified as potent and highly selective inhibitors of CSF-1R. The synthesis and SAR of these compounds is reported, along with some physical property, pharmacokinetic and kinase selectivity data.  相似文献   

10.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

11.
In this work, a series of novel benzimidazole derivatives were designed and synthesized as Pin1 inhibitors. Protease-coupled assay was used to investigate the Pin1 inhibitory potency of all synthesized compounds. Thirteen of them showed preferable Pin1 inhibitory effects with IC50 values lower than 5 μM, and 12a, 15b, 15d and 16c exhibited the most promising Pin1 inhibitory activity at low micromolar level (0.33–1.00 μM) than the positive control compound Juglone. Flow cytometry results showed that treating PC-3 cells with 16c caused slight cycle arrest in a concentration-dependent manner. The structure-activity relationships of R1, R2, R3 and linker of the benzimidazole derivatives were analyzed in detail, which would help further exploration of new Pin1 inhibitors.  相似文献   

12.
Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2?nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4?μM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

13.
As potential inhibitors of pyruvate dehydrogenase complex E1 (PDHc-E1), a series of 19 1-((4-amino-2-methylpyrimidin-5-yl)methyl)-5-methyl-N′-(substituent)benzylidene-1H-1,2,3-triazole-4-carbohydrazide 4 has been synthesized and tested for their PDHc-E1 inhibitory activity in vitro. Some of these compounds such as 4a, 4g, 4l, 4o, 4p, and 4q were demonstrated to be effective inhibitors by the bioassay of Escherichia coli PDHc-E1. SAR analysis indicated that the PDHc-E1 inhibitory activity could be further enhanced by optimizing the substituted groups in the parent compound. Molecular modeling study with compound 4o as a model was performed to evaluate docking. The results of modeling study suggested a probable inhibition mechanism.  相似文献   

14.
2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.  相似文献   

15.
Starting from a weak screening hit, potent and selective inhibitors of the MALT1 protease function were elaborated. Advanced compounds displayed high potency in biochemical and cellular assays. Compounds showed activity in a mechanistic Jurkat T cell activation assay as well as in the B-cell lymphoma line OCI-Ly3, which suggests potential use of MALT1 inhibitors in the treatment of autoimmune diseases as well as B-cell lymphomas with a dysregulated NF-κB pathway. Initially, rat pharmacokinetic properties of this compound series were dominated by very high clearance which could be linked to amide cleavage. Using a rat hepatocyte assay a good in vitro-in vivo correlation could be established which led to the identification of compounds with improved PK properties.  相似文献   

16.
A new series of IGF-1R inhibitors related to hydantoins were identified from a lead originating from HTS. Their noncompetitive property as well as their slow binding characteristics provided a series of compounds with unique selectivity and excellent cellular activities.  相似文献   

17.
A series of novel indole-pyrazoline hybrid derivatives were designed, synthesized, and evaluated for topoisomerase 1 (Top1) inhibitory activity. Top1-mediated relaxation assays showed that our synthesized compounds had variable Top1 inhibitory activity. Among these compounds, 3-(5-(naphthalen-1-yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl)-1-(phenylsulfonyl)-1H-indole (6n) was found to be a strong Top1 inhibitor with better inhibitory activity than CPT and hit compounds. Our further experiments rationalized the mode of action for this new type of inhibitors, which showed no significant binding to supercoiled DNA.  相似文献   

18.
The new aminoalkyl-substituted derivatives of known CK2 inhibitors 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) were synthesized, and their influence on the activity of recombinant human CK2 α, CK2 holoenzyme and PIM1 kinases was evaluated. All derivatives inhibited the activity of studied kinases and the most efficient were aminopropyl-derivatives 8b and 14b. These compounds also exerted inhibition of cancer cell lines – CCRF-CEM (acute lymphoblastoid leukemia), MCF-7 (human breast cancer), and PC-3 (prostate cancer) proliferation and their EC50 is comparable with the value for clinically studied CK2 inhibitor CX-4945. Preliminary structure activity relationship analysis indicated that the spacer length affected antitumor potency, and two to three methylene units were more favorable. The complex of CK2 α1-335/8b was crystallized, both under high-salt conditions and under low-salt conditions giving crystals which diffracted X-rays to about 2.4 Å resolution, what enabled the determination of the corresponding 3D-structures.  相似文献   

19.
Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7 g exhibited the most inhibitory activity against c-Met with IC50 of 53.4 nM and 253 nM in enzymatic and cellular level, respectively. Following that, the compound 7 g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7 g was a potential c-Met inhibitor deserving further investigation for cancer treatment.  相似文献   

20.
Two series of novel aryl-acrylic derivatives were designed, synthesized, and screened in enzymatic and cellular inhibitory activities. All compounds showed moderate to significant potency. The SAR analyses indicated that the semicarbazone linker is better than the 1,2,3-triazole linker. Among semicarbazone compounds that R1 bearing di-chain amino groups exhibited superior activities to those with morpholino group. Furthermore, compounds with electron-withdrawing groups at the 2-position or 4-position on the terminal phenyl ring were more active. Among these, compounds 7g, 7i, 7m and 7n exhibited the inhibitory potency in the low micromolar range and displayed negligible level of cytotoxicity against normal HeLa cells. In addition, the study suggested that the aryl-acrylic is an interesting novel scaffold for IDO1 inhibition for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号