首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The time course of the residual enzyme activity of a general model consisting of an autocatalytic zymogen activation process inhibited by an irreversible competitive inhibitor and an irreversible uncompetitive inhibitor has been studied. Approached analytical expressions which furnish the time course of the residual enzyme activity from the onset of the reaction depending on the rate constants and initial concentration have been obtained. The goodness and limitations of the analytical equations were checked by comparing with the results obtained from the numerical integration, i.e. with the simulated progress curves. A dimensionless parameter giving the relative contributions of both the activation and the inhibitions routes is suggested, so that the value of this parameter determines whether the activation or the inhibitions routes prevail or if both processes are balanced during the time for which the analytical expressions are valid. The effects of the initial zymogen, free enzyme and inhibitors concentrations are analysed. Finally an experimental design and kinetic data analysis is proposed to evaluate simultaneously the kinetic parameters involved and to discriminate between different zymogen activation processes which can be considered particular cases of the general model.  相似文献   

2.
In the present paper, a kinetic analysis of a general model for proenzyme activation, where the activating enzyme and also the activated one are reversibly inhibited in two steps by two different inhibitors, has been performed. The cases in which both inhibitors are the same, or in which the inhibition is irreversible (only one or the two inhibition routes) are treated as particular cases of the general model. In addition, the kinetic behaviour of many other proenzyme activation systems involving inhibition, particular cases of the reaction scheme under study, can be obtained. The total number of particular cases for the general model under study is 370, so this approach offers to the scientific community working in limited proteolysis regulation for the first time a method based on general solutions which only needs to be specified to their concrete problem of zymogen activation. Finally, new adimensional parameters are introduced, allowing the knowledgement, in the case that any of the inhibition routes is irreversible, the relative weight of both activation and irreversible inhibition routes.  相似文献   

3.
竞争性抑制的非稳态酶动力学布尔函数图论研究   总被引:7,自引:5,他引:7  
赵敏 《生物数学学报》2000,15(2):245-249
以非稳戊酶动力学的布尔函数图形方法,来研究一类竞争性抑制的非稳态酶动力学问题,推导出此类反应的百稳态酶动力学方程,并对此动力学方程进行了讨论,分析了此类竞争性抑制酶反应体系的非稳态酶动力学问题。  相似文献   

4.
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide by human tissue kallikrein (hK1) was studied in the absence and in the presence of increasing concentrations of the following chloride salts: sodium, potassium, calcium, magnesium and aluminium. The data indicate that the inhibition of hK1 by sodium, potassium, calcium and magnesium is linear competitive and that divalent cations are more potent inhibitors of hK1 than univalent cations. However the inhibition of hK1 by aluminium cation is linear mixed, with the cation being able to bind to both the free enzyme and the ES complex. This cation was the best hK1 inhibitor. Aluminium is not a physiological cation, but is a known neurotoxicant for animals and humans. The neurotoxic actions of aluminium may relate to neuro-degenerative diseases.  相似文献   

5.
Reversible inhibition, irreversible inhibition, and activation of calf intestinal alkaline phosphatase (EC 3.1.3.1) have been studied by capillary electrophoresis. The capillary electrophoretic enzyme-inhibitor assays were based on electrophoretic mixing of inhibitor and enzyme zones in a substrate-filled capillary. Enzyme inhibition was indicated by a decrease in product formation detected in the capillary by laser-induced fluorescence. Reversible enzyme inhibitors could be quantified by Michaelis-Menten treatment of the electrophoretic data. Reversible, competitive inhibition of alkaline phosphatase by sodium vanadate and sodium arsenate has been examined, and reversible, noncompetitive inhibition by theophylline has been studied. The K(i) values determined for these reversible inhibitors using capillary electrophoresis are within the range of values reported in the literature for the same enzyme-inhibitor combinations. Irreversible inhibition of alkaline phosphatase by EDTA at concentrations of 1.0mM and above has been observed. Activation of alkaline phosphatase has also been observed for EDTA at concentrations from 20 to 400 microM.  相似文献   

6.
Site-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L. casei FPGS in the presence of AMPPCP and Mg(2+). The structure showed a water molecule at the place where Mg(2+) bound to the wild type enzyme. Mutant proteins E143A, and even E143D and E143Q with conservative mutations, lacked enzyme activity and failed to complement the methionine auxotrophy of the E. coli folC mutant SF4, showing that Glu143 is an essential residue. Both the L. casei and the E. coli FPGS mutant proteins bound methylene-tetrahydrofolate diglutamate and dihydropteroate normally. The E. coli E146Q mutant FPGS bound ADP with the same affinity as the wild type enzyme but bound ATP with much lower affinity and had higher ATPase activity than the wild type enzyme. The mutant enzyme was defective in forming the acyl-phosphate reaction intermediate from ATP and dihydropteroate. The E. coli FPGS requires activation by dihydropteroate or tetrahydrofolate binding to allow full activity. In the absence of a pteroate substrate, only 30% of the total enzyme binds ATP. We suggest that dihydropteroate causes a conformational change to allow increased ATP binding. The mutant enzyme was similarly activated by dihydropteroate resulting in increased ADP binding.  相似文献   

7.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

8.
The synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene scaffold by using microwave (MW) assisted techniques is reported in this study. These synthesized hybrid compounds were assayed for the inhibition of carbonic anhydrase (CA, EC 4.2.1.1). The inhibitory activities were determined against three cytosolic human isoforms (hCA I, II and VII) and one membrane-associated (hCA IV) isoform. Some of the newly synthesized sulfonamides showed micromolar to nanomolar inhibitory activity against these enzymes.  相似文献   

9.
Fusarium solani pisi recombinant cutinase was immobilized by adsorption on NaY zeolite. The kinetics of the alcoholysis reaction of butyl acetate with hexanol in isooctane catalyzed by cutinase immobilized on NaY zeolite, was studied. The reaction kinetics is suggested to follow a Ping-Pong bi–bi mechanism in which competitive inhibition by excess of alcohols has been identified. No evidence of any significant external diffusional limitation has been detected. The time validation of the model was successfully achieved simultaneously for 15 experimental product evolutions in a batch stirred tank reactor (BSTR) for different initial reactant concentrations.  相似文献   

10.
Phosphoenolpyruvate carboxylase from leaves of the C4 plant Setaria verticillata (L.) Beauv. is activated by light; day levels of activity are reached after 30 minutes of illumination. Photoactivation is prevented by inhibitors of photosynthetic electron flow or of photophosphorylation and by D,L-glyceraldehyde, which inhibits the reductive pentose phosphate pathway.Although the extractable activity in the dark is not affected by temperature the photoactivation is prevented when both illumination and extraction are done under low temperature (5 C). High temperature (30 C) during either illumination or extraction is needed for activation. Once the enzyme is photoactivated at 30 C, a transfer of the leaves to 5 C does not abolish the extra activity.The results suggest that both unimpaired electron flow and photophosphorylation are prerequisites for the activation of phosphoenolpyruvate carboxylase. Low temperature apparently suppresses either the transport to the cytoplasm of a photosynthetic intermediate or the activating reaction itself. The inclusion of phosphoenolpyruvate in the extraction medium increases the night activity.On the basis of the available information, it is suggested that phosphoenolpyruvate could be the activator in vivo. In that case, the activation of phosphoenolpyruvate carboxylase would depend on internal CO2 level and prior photoactivation of both pyruvate, orthophosphate, dikinase and NADP malate dehydrogenase.Abbreviations PEPCase phosphoenolpyruvate carboxylase - PEP phosphoenolpyruvate - PAR photosynthetically active radiation - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DSPD disalicylidenpropanediamine - MV methylviologen - ME malic enzyme - MDH malate dehydrogenase - PPDK pyruvate, Pi dikinase - CAM Crassulacean Acid Metabolism  相似文献   

11.
The effect of various phenolic compounds on the activity of Rhus vernicifera laccase (Lc) has been evaluated using two different substrates, N,N-dimethyl-p-phenylenediamine and p-tert-butylcatechol. The observed effect strongly depends on the phenol employed and involves either a moderate activation, by halophenols, or inhibition, by acidic phenols. The collective data are consistent with an open active site in Lc, which is capable of accommodating more than one substrate or phenol molecule. According to NMR relaxation experiments, a phenol molecule binds at an average distance from type 1 Cu of about 6 Å, while evidence from electron paramagnetic resonance (EPR) experiments shows that binding of another phenol molecule induces a change, and probably occurs close to, the type 2/type 3 cluster. The effect of phenolic compounds on Lc reactivity is related to a modification of the substrate affinity for the enzyme. This affinity can either be increased, probably through π-stacking or other types of interactions, or decreased, due to competition for the same site. In addition, the alteration induced in the trinuclear copper cluster has a marked effect on the enzyme reactivity. The inhibition observed with acidic phenols is probably due to the protonation of an enzyme intermediate produced at the trinuclear site, e.g. the peroxy intermediate, that causes the release of hydrogen peroxide and prevents the reaction of this intermediate with the substrate.  相似文献   

12.
Suding KN  LeJeune KD  Seastedt TR 《Oecologia》2004,141(3):526-535
Changes in competitive interactions under conditions of enhanced resource availability could explain the invasion success of some problematic plant species. For one invader of North American grasslands, Centaurea diffusa (diffuse knapweed), we test three hypotheses: (1) under ambient (high resource) conditions, C. diffusa is better able to tolerate competition from the resident community (competitive response), (2) under ambient conditions, C. diffusa strong impacts the competitive environment (competitive effect), and (3) reductions in nitrogen and/or phosphorus availability diminish these advantages. In support of our first hypothesis, C. diffusa was the most tolerant to neighbor competition of the four focal species under current resource conditions. In opposition to our second hypothesis, however, neighborhoods that contained C. diffusa and those where C. diffusa had been selectively removed did not differ in their impact on the performance of target transplant individuals or on resource conditions. Reduction in resource availability influenced competitive tolerance but not competitive impact, in partial support of our last hypothesis. Reduction in soil nitrogen (via sucrose carbon addition) enhanced the degree of neighbor competition experienced by all species but did not change their relative rankings; C. diffusa remained the best competitor under low nitrogen conditions. Reduction of soil phosphorus (via gypsum addition) weakened the ability of C. diffusa to tolerate neighbor competition proportionately more than the other focal species. Consequently, under low phosphorus conditions, C. diffusa lost its competitive advantage and tolerated neighbor competition similarly to the other focal species. We conclude that C. diffusa invasion may be double-edged: C. diffusa is less limited by nitrogen than the other focal species and is better able to utilize phosphorus to its competitive advantage.  相似文献   

13.
The effect of various phenolic compounds on the activity of Rhus vernicifera laccase (Lc) has been evaluated using two different substrates, N,N-dimethyl-p-phenylenediamine and p-tert-butylcatechol. The observed effect strongly depends on the phenol employed and involves either a moderate activation, by halophenols, or inhibition, by acidic phenols. The collective data are consistent with an open active site in Lc, which is capable of accommodating more than one substrate or phenol molecule. According to NMR relaxation experiments, a phenol molecule binds at an average distance from type 1 Cu of about 6 Å, while evidence from electron paramagnetic resonance (EPR) experiments shows that binding of another phenol molecule induces a change, and probably occurs close to, the type 2/type 3 cluster. The effect of phenolic compounds on Lc reactivity is related to a modification of the substrate affinity for the enzyme. This affinity can either be increased, probably through π-stacking or other types of interactions, or decreased, due to competition for the same site. In addition, the alteration induced in the trinuclear copper cluster has a marked effect on the enzyme reactivity. The inhibition observed with acidic phenols is probably due to the protonation of an enzyme intermediate produced at the trinuclear site, e.g. the peroxy intermediate, that causes the release of hydrogen peroxide and prevents the reaction of this intermediate with the substrate.  相似文献   

14.
Cathepsin B (EC 3.4.22.1) was purified from buffalo liver. The enzyme activity against-benzoyl-dl-arginine-naphthylamme (BANA) was substantially reduced by heat (above 37C) and by nondenaturing concentrations of urea (3 M) and guanidine hydrochloride (1 M). Cathepsin B was significantly activated by 1.5 mM EDTA alone. The activation of the enzyme was further enhanced in the presence of thiol compounds, e.g., cysteine thioglycolic acid, 2,3-dimercapto-1-propenol, and dithioerythritol (DTE). The minimum concentration of the thiol compound required for optimal activation of cathepsin B was found to be lowest (0.2 mM) for DTE. The BANA hydrolyzing activity of cathepsin B was substantially reduced by Cu2+ (20–200M) and Ca2+ (30–250 mM) as well as by thiol blocking reagents, e.g., iodoacetate, 5,5-dithiobis(2-nitro-benzoic acid) (DTNB), andp-hydroxymercuribenzoate (pHMB). The enzyme activity was completely abolished when the molar ratio of the reagent: cathepsin B was close to 1. The number of free sulfhydryl groups in cathepsin B was determined to be 2 by titration against DTNB and pHMB. Modification of one free thiol group of cathepsin B resulted in complete loss of BANA hydrolyzing activity.  相似文献   

15.
The reaction conditions towards the preferential action of either nitrile hydratase or amidase in the harvested whole cells of Rhodococcus rhodochrous IFO 15564 were elaborated. The amidase showed higher heat tolerance than the nitrile hydratase and, at 45 °C the amidase worked exclusively. DMSO assisted the preferential action of nitrile hydratase, however, at more than 30% (v/v) addition of DMF, the nitrile hydratase activity was completely lost and only amidase worked. A one-pot chemo-enzymatic conversion of aldehydes to amides [(1) aq. NH3, I2, DMSO; (2) Na2S2O3; (3) harvested cells of R. rhodochrous] was established. Under these reaction conditions, most of the amidase was lost, and the incubation of the firstly formed intermediates, nitriles in aq. NH3 was responsible for the selective inhibition of amidase. The freezing of harvested cells in an exhaustively deionized environment provided a long-term preservable “ready to use” for the organic chemist.  相似文献   

16.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

17.
The three coupling segments of the respiratory chain of bovine heart mito-chondria were examined individually by steady-state kinetic methods to determine whether or not freely diffusible intermediates occur between the energy-yielding and energy-consuming steps involved in the oxidative phosphorylation of extramitochondrial ADP. The principal method employed was the dual inhibitor technique, for which an appropriate model is provided. The results indicate that in accordance with the chemiosmotic theory the intermediate reactants that link the energy-yielding rotenone-sensitive (Site 1), cytochromebc1 (Site 2), and cytochromeaa3 (Site 3) reactions of the respiratory chain to the energy-consuming ATP synthetase, AdN transport, and Pi transport reactions are freely diffusible (delocalized). Site 2 was found to differ from the others in regard to the mechanism by which the energy-linked respiratory chain reaction is controlled by the energy-consuming steps. Whereas the Site 1 and Site 3 respiratory chain reactions are controlled primarily by the thermodynamic mechanism of reaction reversal, the Site 2 respiratory reaction is controlled primarily by a kinetic mechanism in which an intermediate that links it to the energy-consuming steps inhibits it allosterically. From the effects of nigericin and valinomycin the allosteric intermediate appears to be the electrical component of the protonmotive force.  相似文献   

18.
A Pseudomonas fluorescens was found to degrade and utilize a polyester polyurethane as a sole carbon and energy source. Polyurethane utilization by P. fluorescens. followed simple Michaelis–Menten kinetics. The Ks and μmax values were 0.9 mg ml−1 and 1.61 doublings · h−1, respectively. The enzymes from P. fluorescens responsible for polyurethane degradation were found to be extracellular. Analysis of the polyurethane degrading proteins using non-denaturing polyacrylamide gel electrophoresis revealed one active protein band with an Rf value of 0.083. A polyurethane degrading enzyme was purified and displayed protease activity. This enzyme was inhibited by phenylmethylsulfonyl fluoride and had a molecular weight of 29,000 daltons.  相似文献   

19.
Tyrosinase or polyphenol oxidase is the key enzyme in melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Our research group previously proposed a kinetic reaction mechanism for tyrosinase acting on some phenolic substrates, whose reliability was demonstrated for tyrosinases from several fruits and vegetables. A kinetic analysis and an experimental design for testing the reliability of the kinetic reaction mechanism of tyrosinase are reported. The applicability of the mechanism to the oxidation of tyramine/dopamine and -tyrosine methyl esther/-dopa methyl esther has been checked. Some structure/activity topics are discussed. A complete kinetic characterisation of the oxidation of these phenolic substrates has been made. This will be useful for further studies about the control of depigmenting agents, antimelanome drugs and antibrowning reagents acting on tyrosinase.  相似文献   

20.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号