首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of dialkyl phenyl phosphates (DAPPs) were synthesized and evaluated in silico and in vitro for inhibitory activity against acetylcholinesterase and butyrylcholinesterase. Among the compounds examined, several DAPPs were shown to be potent inhibitors of butyrylcholinesterase, while having little activity against acetylcholinesterase. The most potent and selective inhibitors were di-n-butyl phenyl phosphate (K(i)=43 microM), di-n-pentyl phenyl phosphate (K(i)=6 microM), and di-cyclohexyl phenyl phosphate (K(i)=7 microM), the first which was shown to be a competitive inhibitor while the latter two being partial competitive inhibitors. Flexible docking simulations suggested that relative binding affinities generally increased as a function of alkyl chain length, while the strength and nature of inhibitory activity depended on whether the compound bound deeply or midway in the active site gorge, or in the proposed peripheral site.  相似文献   

2.
Selective butyrylcholinesterase inhibitors could be the promising drug candidates, used in treatment of Alzheimer's disease. The study describes the synthesis and biological activity of novel carbamate derivatives with N-phenylpiperazine, N-benzylpiperazine and 4-benzylpiperidine moieties. Biological studies revealed that most of these compounds displayed significant activity against BuChE. Compound 16 (3-(4-phenyl-piperazin-1-ylmethyl)-phenyl phenylcarbamate) turned out to be the most active (IC50 = 2.00 μM for BuChE). For all synthesized compounds lipophilicity and other physicochemical properties were calculated using computer programs. Relationship between these properties and activity was also checked. Binding mode with enzyme and the ensuing differences in activity were explained by the molecular modeling studies.  相似文献   

3.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

4.
Cholinesterase inhibitors have long been used in the treatment of Alzheimer’s Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.  相似文献   

5.
A small library of new organophosphorylated warfarins and 3-benzylcoumarins were synthesized and evaluated for in vitro cholinesterase inhibition by Ellman’s method. Most of the compounds were found to be selective for butyrylcholinesterase (BChE) over acetylcholinesterase (AChE), with IC50 values ranging from 0.363 μM to 53.0 μM determined after 15 s of enzyme exposure. Comparison of the most potent compound, 3b with its constitutional isomer 2b revealed the high importance of phosphate positioning. Reversed selectivity and a 100-fold reduction in anti-BChE activity was observed when the organophosphate was attached to the benzyl instead of the coumarin. Docking calculations suggest that 3b binds initially as a transition state mimic with near-optimal phosphate orientation relative to S198 and occupation of the oxyanion hole prior to phosphorylation. These results might inspire the design of a new type of non-neuropathic and irreversible coumarin-based inhibitor against BChE.  相似文献   

6.
Alzheimer’s disease (AD) is the most common form of dementia. Inhibition of BChE might be a useful therapeutic target for AD. A new series of Carbazole-Benzyl Pyridine derivatives were designed synthesized and evaluated as butyrylcholinesterase (BChE) inhibitors. In vitro assay revealed that all of the derivatives had selective and potent anti- BChE activities. 3-((9H-Carbazol-9-yl)methyl)-1-(4-chlorobenzyl)pyridin-1-ium chloride (compound 8f) had the most potent anti-BChE activity (IC50 value?=?0.073?μM), the highest BChE selectivity and mixed-type inhibition. Docking study revealed that 8f interacted with the peripheral site, the choline binding site, catalytic site and the acyl pocket of BChE. Physicochemical properties were accurate to Lipinski's rule. In addition, compound 8f demonstrated neuroprotective activity at 10?µM. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100?µM and 10?µM respectively. The in-vivo study showed that compound 8f in 10?mg/kg increased the time spent in target quadrant in the probe day and decreased mean training period scape latency in rats. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.  相似文献   

7.
In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6 μM and 0.6 μM, respectively. Further structure–activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes’ inhibition. The Lineweaver–Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.  相似文献   

8.
Butyrylcholinesterase (BuChE) is considered a promising drug target as it plays an important role in the progression of late stage Alzheimer’s disease (AD). Two compound libraries were selected and 64 124 amine containing moieties were screened using a hierarchical virtual screening protocol to discover new selective BuChE inhibitors. From these and subsequent docking experiments, 9-phenylacridinedione (9-PAD) was identified as a promising scaffold for selective inhibition of BuChE. Selected top dock scored 9-PADs were assayed and compounds 3 and 6 exhibited potent and highly selective human BuChE inhibition (IC50: 98 nM and 142 nM, respectively). Both molecules were also predicted to show sufficient brain permeability, not have any substantial toxicities, especially hepatotoxicity, and no significant in vitro cytotoxicity against SH-SY5Y neuroblastoma cells at concentrations up to 100 µM. These findings indicate that 9-PAD is a promising lead structure for the development of agents able to treat late stage AD.  相似文献   

9.
We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.  相似文献   

10.
In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 μM; EeAChE, no inhibition at 100 μM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 μM; EeAChE, IC50 = 0.11 μM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 μM; EeAChE, no inhibition at 100 μM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 μM; EeAChE, 38.9% inhibition at 100 μM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer’s disease treatment.  相似文献   

11.
Two novel taspine diphenyl derivatives (Ta‐dD) were designed and synthesized by introducing different coumarin fluorescent groups into the basic structure of Ta‐dD. The main advantage of these two compounds is that they can be used as fluorescence probes and inhibitors simultaneously. In the present study, the fluorescent properties of the probes were measured and their inhibition of four breast cancer cell lines was tested. Different concentrations of the fluorescence probe were added to MCF‐7 breast cancer cells for fluorescence imaging analysis under normal conditions. The results suggested that both of the new compounds have not only fluorescence but also the ability to inhibit effects on different breast cancer cell lines, which indicates their possible further use as dual functional fluorescence probes in tracer analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The skeleton of the diterpene dehydroabietylamine was modified, and a set of 12-hydroxy-dehydroabietylamine derivatives was obtained. The compounds were screened in colorimetric Ellman’s assays to determine their ability to act as inhibitors for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). Additional investigations concerning the enzyme kinetics were performed and showed 12-hydroxy-N-(4-nitro-benzoyl)dehydroabietylamine (13) and 12-hydroxy-N-(isonicotinoyl)dehydroabietylamine (17) as selective BChE inhibitors holding good inhibition constants Ki = 0.72 ± 0.06 μM and Ki = 0.86 ± 0.19 μM, respectively.  相似文献   

13.
Acetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors. The most promising compounds (9 and 11) were not cytotoxic and their kinetic study accounted for dual binding site mode of interaction, which is in agreement with further docking and molecular dynamics studies. Therefore, this study demonstrates how our strategy enabled the discovery of novel promising and privileged structures. Remarkably, compound 11 proved to be one of the most potent (0.17?nM) and selective (>58,000-fold) hBuChE inhibitor ever reported.  相似文献   

14.
CCR6 has been implicated in both autoimmune diseases and non-autoimmune diseases. Thus, inhibition of CCR6-dependent cell migration is an attractive strategy for their treatment. An orally available small molecule inhibitor of CCR6 could therefore be a useful biological probe for the pathophysiological studies. Initial SAR study of a hit compound provided potent N-benzenesulfonylpiperidine derivatives that suppressed CCL20-induced Gi signals. By subsequent scaffold morphing of the central ring and further optimization, we identified a novel series of 1,4-trans-1-benzenesulfonyl-4-aminocyclohexanes as potent and selective CCR6 inhibitors with good pharmacokinetic properties. Our compounds showed good correlation between Gi signal inhibitory activity and cell migration inhibitory activity in human CCR6-transfected CHO cells. In addition, representative compound 35 potently inhibited CCR6-dependent cell migration and the increase in ERK phosphorylation in human primary cells. Therefore, the compound could be used effectively as a biological probe against human CCR6.  相似文献   

15.
Monoacylglycerol lipase (MAGL) is the enzyme that is primarily responsible for hydrolyzing the endocannabinoid 2-arachidononylglycerol (2-AG) to arachidonic acid (AA). It has emerged in recent years as a potential drug target for a number of diseases. Herein, we report the discovery of compound 6g from a series of azetidine-piperazine di-amide compounds as a potent, selective, and reversible inhibitor of MAGL. Oral administration of compound 6g increased 2-AG levels in rat brain and produced full efficacy in the rat complete Freund’s adjuvant (CFA) model of inflammatory pain.  相似文献   

16.
To search for potent anti-Alzheimer’s disease (AD) agents with multifunctional effects, 12 NO-donating tacrine–flurbiprofen hybrid compounds (2al) were synthesized and biologically evaluated. It was found that all the new target compounds showed selective butyrylcholinesterase (BuChE) inhibitory activity in vitro comparable or higher than tacrine and the tacrine–flurbiprofen hybrid compounds 1ac, and released moderate amount of NO in vitro. The kinetic study suggests that one of the most active and highest BuChE selective compounds 2d may not only compete with the substrate for the same catalytic active site (CAS) but also interact with a second binding site. Furthermore, 2d and 2l exhibited significant vascular relaxation effect, which is beneficial for the treatment of AD. All the results suggest that 2d and 2l might be promising lead compounds for further research.  相似文献   

17.
对历来利用荧光分析技术研究和定量测定核酸的情况加以简单的综合评述。介绍了截至目前用于核酸研究和测定的一些主要有机荧光试剂,并对新兴的如有机纳米探针和分子信标等荧光分析技术以及有机荧光试剂的发展前景进行评述。  相似文献   

18.
19.
Cinnamic anhydrides have been shown to be more than reactive reagents, but they also act as inhibitors of the enzyme acetylcholinesterease (AChE). Thus, out of a set of 33 synthesised derivatives, several of them were mixed type inhibitors for AChE (from electric eel). Thus, (E)-3-(2,4-dimethoxyphenyl)acrylic anhydride (2c) showed Ki = 8.30 ± 0.94 µM and Ki′ = 9.54 ± 0.38 µM, and for (E)-3-(3-chlorophenyl)acrylic anhydride (2u) Ki = 8.23 ± 0.93 µM and Ki′ = 13.07 ± 0.46 µM were measured. While being not cytotoxic to many human cell lines, these compounds showed an unprecedented and noteworthy inhibitory effect for AChE but not for butyrylcholinesterase (BChE).  相似文献   

20.
Cholinesterases catalyze the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid, allowing the nervous system to function properly. In the human body, cholinesterases come in two types, including acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). Both cholinergic enzyme inhibitors are essential in the biochemical processes of the human body, notably in the brain. On the other hand, GSTs are found all across nature and are the principal Phase II detoxifying enzymes in eukaryotes and prokaryotes. Specific isozymes are identified as therapeutic targets because they are overexpressed in various malignancies and may have a role in the genesis of other diseases such as neurological disorders, multiple sclerosis, asthma, and especially cancer cell. Piperazine chemicals have a role in many biological processes and have fascinating pharmacological properties. As a result, therapeutically effective piperazine research is becoming more prominent. Half maximal inhibition concentrations (IC50) of piperazine derivatives were found in ranging of 4.59–6.48 µM for AChE, 4.85–8.35 µM for BChE, and 3.94-8.66 µM for GST. Also, piperazine derivatives exhibited Ki values of 8.04 ± 5.73–61.94 ± 54.56, 0.24 ± 0.03–32.14 ± 16.20, and 7.73 ± 1.13–22.97 ± 9.10 µM toward AChE, BChE, and GST, respectively. Consequently, the inhibitory properties of the AChE/BChE and GST enzymes have been compared to Tacrine (for AChE and BChE) and Etacrynic acid (for GST).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号