首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

A series of benzenesulfonamide derivatives, bearing benzimidazole moieties, were designed and synthesized as inhibitors of carbonic anhydrases (CAs). Their binding affinities to recombinant human CA isozymes I, II, VII, XII and XIII were determined by the thermal shift assay. A group of compounds containing a benzimidazole substituent in the para position of the benzenesulfonamide ring was found to exhibit higher binding potency toward tested CAs than meta-substituted benzenesulfonamides. Some of these compounds exhibited nanomolar affinities and selectivity toward the CA isozymes tested.  相似文献   

3.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

4.
Abstract

In this study, the interactions of a novel metal complex [Dy(bpy)2Cl3.OH2] (bpy is 2,2'-bipyridine) with fish salmon DNA (FS-DNA) and bovine serum albumin (BSA) were investigated by experimental and theoretical methods. All results suggested significant binding between the Dy(III) complex with FS-DNA and BSA. The binding constants (Kb), Stern-Volmer quenching constants (KSV) of Dy(III)-complex with FS-DNA and BSA at various temperatures as well as thermodynamic parameters using Van’t Hoff equation were obtained. The experimental results from absorption, ionic strength, iodide ion quenching, ethidium bromide (EtBr) quenching studies and positive ΔH? and ΔS? suggested that hydrophobic groove-binding mode played a predominant role in the binding of Dy(III)-complex with FS-DNA. Indeed, the molecular docking results for DNA-binding were in agreement with experimental data. Besides, the results found from experimental and molecular modeling indicated that the Dy(III)-complex bound to BSA via Van der Waals interactions. Moreover, the results of competitive tests by phenylbutazone, ibuprofen, and hemin (as a site-I, site-II and site-III markers, respectively) considered that the site-III of BSA is the most possible binding site for Dy(III)-complex. In addition, Dy(III) complex was concurrently screened for its antimicrobial activities. The presented data provide a promising platform for the development of novel metal complexes that target nucleic acids and proteins with antimicrobial activity.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
Evidence for the non-enzymatic phosphorylation of bovine serum albumin (BSA) by sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V), Na[CrVO(ehba)2], 1, sodium bis(2-hydroxy-2-methylbutyrato)oxochromate(V), Na[CrVO(hmba)2], 2 and potassium dichromate, K2Cr2O7, 3 in the presence of labeled adenosine-5′-triphosphate (ATP) under conditions of physiological pH is presented. Aggregation and extent of phosphorylation of BSA mediated by 1, 2 or 3 seems to increase with the concentration and time of incubation of the reaction mixture containing all the reactants. The [γ-32P] label in ATP is incorporated into aggregates of BSA in the in vitro reaction of the protein with ATP in the presence of 1, 2 or 3. Phosphorylation of BSA by ATP in the absence of 1, 2 or 3 is negligible. Addition of EDTA reverses aggregation of protein and liberates partially the incorporated phosphate label. The stoichiometry of phosphorylation is found to be the highest and is equal to 12.25 mol PO43−/mol BSA in the presence of 500 μM of 1, which decreases to 10.56 mol PO43−/mol BSA after EDTA treatment. Resistance to the removal of phosphate label by EDTA increases with increase in time of incubation. Dialysis of phosphorylated BSA reverses the incorporated [γ-32P] label only partially, indicating the formation of covalent links of phosphate groups to BSA. Evidence for the site of phosphorylation in the reaction mediated by 1, 2 or 3 being hydroxyl side groups of tyrosine and serine/threonine residues has been gained. Based on the results, a possibility that 1, 2 and 3 mimic the function of tyrosine and serine/threonine kinases has been invoked.  相似文献   

6.
The in vitro and in vivo inhibitory effects of 5-(3α, 12α-dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α, 7α, 12α-trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α, 7α, 12α-triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5?EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052?μM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.  相似文献   

7.
BackgroundHuman carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding.MethodsThe observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry.ResultsThe pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was − 24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM.ConclusionsThe intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship.General significanceIt is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations.  相似文献   

8.
ABSTRACT

Introduction: Two of the most ubiquitous fatigue countermeasures used by shift-working nurses are napping and caffeine. This mixed-methods case study investigated the ways nurses and midwives utilised napping and caffeine countermeasures to cope with shift work, and associated sleep, physical health and psychological health outcomes.

Materials and Methods: = 130 Australian shift-working nurses and midwives (mean age = 44 years, range = 21–67, 115F, 15M) completed the Standard Shiftwork Index. A sub-set of 22 nurses and midwives completed an in-depth interview.

Results: Nearly 70% of participants reported napping. Those who napped during night shifts had significantly less total sleep time before (F2,75 = 5.5, < 0.01) and between days off (F2,82 = 3.9, < 0.05). By the end of the night shift, average hours of time awake were significantly less for prophylactic and on-shift nappers compared to non-nappers (F2,85 = 97.2, p < 0.001). Since starting shift work, the percentage of high caffeine consumers (>400 mg/day) increased from 15% to 33% of the sample and an average of 4 (SD = 2) caffeinated beverages per day was reported. Increased caffeine consumption was associated with greater sleep disturbance (= 0.26, < 0.05), psychological distress (= 0.37, < 0.001), abdomen pain (= 0.27, < 0.05) and weight gain since starting shift work (= 0.25, < 0.05). Interviews confirmed these relationships and revealed that caffeine consumption on night shift was common, whereas napping on night shift was dependent on a number of factors including ability to sleep during the day.

Conclusion: This study identified reasons shift workers chose to engage in or abstain from napping and consuming caffeine, and how these strategies related to poor sleep and health outcomes. Further research is required to help develop recommendations for shift workers regarding napping and caffeine consumption as fatigue countermeasures, whilst taking into account the associated hazards of each strategy.  相似文献   

9.
New binary copper(II) complexes [Cu(4-mphen)2(NO3)]NO3·H2O (1), [Cu(5-mphen)2 (NO3)]NO3·H2O (2), the known complex [Cu(dmphen)2(NO3)]NO3 (3) and [Cu(tmphen)2 (NO3)]NO3·H2O (4) - (4-mphen: 4-methyl-1,10-phenanthroline, 5-mphen: 5-methyl-1,10-phenanthroline, dmphen: 4,7-dimethyl-1,10-phenanthroline, tmphen: 3,4,7,8-tetramethyl-1,10-phenanthroline), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33,258 displacement assay and thermal denaturation measurement. These complexes cleaved pUC19 plasmid DNA in the absence and presence of an external agent. Notably, in the presence of H2O2 as an activator, the cleavage abilities of these complexes are obviously enhanced at low concentration. Addition of hydroxyl radical scavengers like DMSO shows significant inhibition of the DNA cleavage activity of these complexes. BSA quenching mechanism was investigated with regard to the type of quenching, binding constant, number of binding locations and the thermodynamic parameters. The experimental results suggested that the probable quenching mechanism was an unusual static process and hydrophobic forces play a dominant role. The CT-DNA and BSA binding efficiencies of these complexes follow the order: 4 > 3 > 1 > 2. Furthermore, in vitro cytotoxicities of these complexes on tumor cells lines (Caco-2, MCF-7 and A549) and healthy cell line (BEAS-2B) showed that these complexes exhibited anticancer activity with low IC50 values. The effect of hydrophobicity of the methyl-substituted phenanthrolines on DNA and protein binding activities of these complexes is discussed.  相似文献   

10.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
Saif  Rashid  Henkel  Jan  Mahmood  Tania  Ejaz  Aniqa  Ahmad  Fraz  Zia  Saeeda 《Molecular biology reports》2021,48(11):7273-7280
Background

Natural and artificial selection tend to cause variability that contributes to shape the genome of livestock in a way that differentiates them among the animal kingdom. The particular aim here is to identify positive selection signatures with whole genome pooled-sequence data of Pakistani Teddy goat.

Methods and results

Paired-end alignment of 635,357,043 reads of Teddy goat with (ARS1) reference genome assembly was carried out. Pooled-Heterozygosity (Hp) and Tajima’s D (TD) are applied for validation and getting better hits of selection signals, while pairwise FST statistics is conducted on Teddy vs. Bezoar (wild goat ancestor) for genomic differentiation, moreover annotation of regions under positive selection was also performed. Hp score with???ZHp?>?5 detected six windows having highest hits on Chr. 29, 9, 25, 15 and 14 that harbor HRASLS5, LACE1 and AXIN1 genes which are candidate for embryonic development, lactation and body height. Secondly, ? ZTD value of?>?3.3 showed 4 windows with very strong hits on Chr.5 & 9 which harbor STIM1 and ADM genes related to body mass and weight. Lastly, ? ZFST?<?? 5 generated four strong signals on Chr.5 & 12 harbor LOC102183233 gene. Other significant selection signatures encompass genes associated with wool production, prolificacy and coat colors traits in this breed.

Conclusions

In brief, this study identified the genes under selection in Pakistani Teddy goat that will be helpful to refining the marker-assisted breeding policies and converging required production traits within and across other goat breeds and to explore full genetic potential of this valued species of livestock.

  相似文献   

12.
The interaction between thiamine hydrochloride (TA) and bovine serum albumin (BSA) was investigated by fluorescence, FTIR, UV–vis spectroscopic and cyclic voltammetric techniques under optimised physiological condition. The fluorescence intensity of BSA is gradually decreased upon addition of TA due to the formation of a BSA–TA complex. The binding parameters were evaluated and their behaviour at different temperatures was analysed. The quenching constants (Ksv) obtained were 2.6 × 104, 2.2 × 104 and 2.0 × 104 L mol?1 at 288, 298 and 308 K, respectively. The binding mechanism was static-type quenching. The values of ΔH° and ΔS° were found to be 26.87 kJ mol?1 and 21.3 J K?1 mol?1, and indicated that electrostatic interaction was the principal intermolecular force. The changes in the secondary structure of BSA upon interaction with TA were confirmed by synchronous and 3-D spectral results. Site probe studies reveal that TA is located in site I of BSA. The effects of some common metal ions on binding of BSA–TA complex were also investigated.  相似文献   

13.
The intracellular compartmentation of carbonic anhydrase (CA; EC 4.2.1.1), an enzyme that catalyses the reversible hydration of CO2 to bicarbonate, has been investigated in potato (Solanum tuberosum L.) leaves. Although enzyme activity was mainly located in chloroplasts (87% of total cellular activity), significant activity (13%) was also found in the cytosol. The corresponding CA isoforms were purified either from chloroplasts or crude leaf extracts, respectively. The cytosolic isoenzyme has a molecular mass of 255 000 and is composed of eight identical subunits with an estimated M r of 30000. The chloroplastic isoenzyme (M r 220000) is also an octamer composed of two different subunits with M r estimated at 27 000 and 27 500, respectively. The N-terminal amino acid sequences of both chloroplastic CA subunits demonstrated that they were identical except that the M r-27 000 subunit was three amino acids shorter than that of the M r-27 500 subunit. Cytosolic and chloroplastic CA isoenzymes were found to be similarly inhibited by monovalent anions (Cl, I, N 3 - and NO 3 - ) and by sulfonamides (ethoxyzolamide and acetozolamide). Both CA isoforms were found to be dependent on a reducing agent such as cysteine or dithiothreitol in order to retain the catalytic activity, but 2-mercaptoethanol was found to be a potent inhibitor. A polyclonal antibody directed against a synthetic peptide corresponding to the N-terminal amino acid sequence of the chloroplastic CA monomers also recognized the cytosolic CA isoform. This antibody was used for immunocytolocalization experiments which confirmed the intracellular compartmentation of CA: within chloroplasts, CA is restricted to the stroma and appears randomly distributed in the cytosol.Abbreviations BSA bovine serum albumin - CA carbonic anhydrase - PMSF phenylmethylsulphonyl fluoride - BAM benzamidine - DTT dithiothreitol - 2-ME 2-mercaptoethanol - PVDF polyvinylidene difluoride The authors thanks P. Carrier and Dr. B. Dimon for technical assistance with the mass-spectrometry measurements.  相似文献   

14.
The transport of more than 90% of the drugs viz. anticoagulants, analgesics, and general anesthetics in the blood takes place by albumin. Hence, albumin is the prime protein needs to be investigated to find out the nature of drug binding. Serum albumin molecules are prone to glycation at elevated blood glucose levels as observed in diabetics. In this piece of work, glycation of bovine serum albumin (BSA) was carried out with glyceraldehyde and characterized by molecular docking and fluorometry techniques. Glycation of BSA showed 25% loss of free amino groups and decreased protein fluorescence (60%) with blue shift of 6 nm. The present study was also designed to evaluate the binding of colchicine (an anti-inflammatory drug) to native and glycated BSA and its ability to displace 8-analino-1-nephthalene sulfonic acid (ANS), from the BSA–ANS complex. Binding of ANS to BSA showed strong binding (Ka = 4.4 μM) with native conformation in comparison to glycated state (Ka = 8.4 μM). On the other hand, colchicine was able to quench the fluorescence of native BSA better than glycated BSA and also showed weaker affinity (Ka = 23 μM) for glycated albumin compared with native state (Ka = 16 μM). Molecular docking study showed that both glyceraldehyde and colchicine bind to common residues located near Sudlow’s site I that explain the lower binding of colchicine in the glycated BSA. Based on our results, we believe that reduced drugs-binding affinity to glycated albumin may lead to drugs accumulation and precipitation in diabetic patients.  相似文献   

15.
Abstract

Two nickel(II) complexes with substituted bipyridine ligand of the type [Ni(NN)3](ClO4)2, where NN is 4,4′-dimethyl-2,2′-bipyridine (dimethylbpy) (1) and 4,4′-dimethoxy-2,2′-bipyridine (dimethoxybpy) (2), have been synthesized, characterized, and their interaction with DNA and bovine serum albumin (BSA) studied by different physical methods. X-ray crystal structure of 1 shows a six-coordinate complex in a distorted octahedral geometry. DNA-binding studies of 1 and 2 reveal that both complexes sit in DNA groove and then interact with neighboring nucleotides differently; 2 undergoes a partial intercalation. This is supported by molecular-docking studies, where hydrophobic interactions are apparent between 1 and DNA as compared to hydrogen bonding, hydrophobic, and π–π interactions between 2 and DNA minor groove. Moreover, the two complexes exhibit oxidative cleavage of supercoiled plasmid DNA in the presence of hydrogen peroxide as an activator in the order of 1?>?2. In terms of interaction with BSA, the results of spectroscopic methods and molecular docking show that 1 binds with BSA only via hydrophobic contacts while 2 interacts through hydrophobic and hydrogen bonding. It has been extensively demonstrated that the nature of the methyl- and methoxy-groups in ligands is a strong determinant of the bioactivity of nickel(II) complexes. This may justify the above differences in biomolecular interactions. In addition, the in vitro cytotoxicity of the complexes on human carcinoma cells lines (MCF-7, HT-29, and U-87) has been examined by MTT assay. According to our observations, 1 and 2 display cytotoxicity activity against selected cell lines.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Detection of hydA genes of Clostridia spp. using degenerative and species specific primers for C. butyricum were optimized by the addition of bovine serum albumin (BSA) to polymerase chain reaction (PCR) and quantitative PCR (qPCR) reactions. BSA concentrations ranging from 100 to 400 ng/μl were examined using pure cultures and a variety of environmental samples as test targets. A BSA concentration of 100 ng/μl, which is lower than previously reported in the literature, was found to be most effective in improving the detection limit. The brightness of amplicons with 100 ng/μl BSA increased in ethidium bromide-treated gels, the minimum detection limit with BSA was at least one log greater, and cycle threshold (C T) values were lower than without BSA in qPCR indicating improved detection of target deoxyribonucleic acid for most samples tested. Although amplicon visualization was improved at BSA concentrations greater than or equal to 100 ng/μl, gene copy numbers detected by qPCR were less, CT values were increased, and T m values were altered. SYBR Green dissociation curves of qPCR products of DNA from pure culture or sludge samples showed that BSA at 100 ng/μl reduced the variability of peak areas and T m values.  相似文献   

17.
A novel method was developed for studying the interaction between epirubicin hydrochloride (EPI) and bovine serum albumin (BSA) by fluorescence spectrometry. Fe3O4 magnetic nanoparticles (MNPs) synthesized and functionalized with thiol group were employed for the immobilization and separation of target BSA in reaction solutions. The concentrations of the non‐immobilized BSA and unbound EPI were obtained separately by fluorescence spectrometry. The binding constants (K a ) and number of binding sites (n ) of EPI with BSA were calculated. In this study, the K a value was 5.05 × 105 L mol?1, suggesting a strong binding of EPI to BSA, and the n value was 1.15. The effects of common metal ions on K a of EPI with BSA were also investigated, and the results showed there was clearly bindings between the metal ions and BSA. The precise binding sites of EPI on BSA were determined as being in site I from the competitive displacement experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

In spite of suspected circadian differences between different ancestral groups, most human studies have used individuals of European descent. This also applies to three recent genome-wide association studies (GWAS), which pinpointed a number of chronotype loci. We investigated the distribution of these hits in different 1000 Genomes populations. We found 6 out of the 41 alleles previously identified by GWAS in European participants (in the genes RGS16, PER2 and AK5 and between the genes APH1A and CA14) to be absent from some non-European population groups. This highlights the need for ancestral diversity in circadian research and may reflect differences affecting the phenotype of individuals of East Asian ancestry.  相似文献   

19.
Abstract

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure–activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)3]Cl2 (1) and [Co(phendione)3]Cl3 (2), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex 1 is more hydrophobic than complex 2, which could be attributed to lesser charge on its coordination sphere. The interaction of complexes 1 and 2 with BSA using steady state fluorescence studies revealed that these complexes quench the intrinsic fluorescence of BSA through static mechanism, and the extent of quenching and binding parameters are higher for complex 2. Further thermodynamics of BSA-binding studies revealed that complexes 1 and 2 interact with BSA through hydrophobic and hydrogen bonding/van der Waals interactions, respectively. Further, UV–visible absorption, circular dichroism and synchronous fluorescence studies confirmed the occurrence of conformational and microenvironmental changes in BSA upon binding with complexes 1 and 2. Molecular docking studies have also shown that complex 2 has a higher binding affinity towards BSA as compared to complex 1. This sort of modification of ionicity and hydrophobicity of metal complexes for getting desirable binding mode/strength with drug transporting serum albumins will be a promising pathway for designing active and new kind of metallodrugs for various biomedical applications.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Abstract

Testing of an expanded, 800-compound set of analogues of the earlier described Strecker-type α-aminonitriles (selected from publicly available Enamine Ltd. Screening Collection) in thermal shift assay against bovine carbonic anhydrase (bCA) led to further validation of this new class of inhibitors and identification a new, refined chemotype represented by inhibitors with 10-improved potency.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号