首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new series of fluorinated and non-fluorinated 2-phenylbenzimidazoles bearing oxygenated substituents on the phenyl ring has been synthesized. Synthesis of the new series was based on our previous discovery of 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610) as a potent and selective antitumour agent in vitro (sub-nanomolar GI(50) in sensitive human cancer cell lines), but with poor aqueous solubility and lack of a definitive cellular target limiting further development. In this study we test the hypothesis that 2-phenylbenzimidazoles with similar substitution patterns to PMX 610 would retain potent antitumour activity but with potentially superior pharmaceutical properties. In general the new compounds were less active than the former benzothiazole series in vitro when tested against the breast cancer cell lines MCF-7 and MDA 468; however the two most active compounds in the present series (3j and 3k) exhibit low micromolar GI(50) values in both cell lines and provide the opportunity for further chemical derivatization with a view to target identification.  相似文献   

2.
A new series of 4,6-disubstituted 2-(4-(dimethylamino)styryl)quinoline 4a,b9a,b was synthesized by the reaction of 2-(4-(dimethylamino)styryl)-6-substituted quinoline-4-carboxylic acids 3a,b with thiosemicarbazide, p-hydroxybenzaldehyde, ethylcyanoacetate, and 2,4-pentandione. In addition, the antitumour activity of all synthesized compounds 3a,b9a,b was studied via MTT assay against two cancer cell lines (HepG2 and HCT116). Furthermore, epidermal growth factor receptor (EGFR) inhibition, using the most potent antitumour compounds, 3a, 3b, 4a, 4b, and 8a, was evaluated. The interpretation of the results showed clearly that the derivatives 3a, 4a, and 4b exhibited the highest antitumour activities against the tested cell lines HepG2 and HCT116 with IC50 range of 7.7–14.2?µg/ml, in comparison with the reference drugs 5-fluorouracil (IC50?=?7.9 and 5.3?µg/ml, respectively) and afatinib (IC50?=?5.4 and 11.4?µg/ml, respectively). In vitro EGFR screening showed that compounds 3a, 3b, 4a, 4b, and 8a exhibited moderate inhibition towards EGFR with IC50 values at micromolar levels (IC50 range of 16.01–1.11?µM) compared with the reference drugs sorafenib (IC50 =?1.14?µM) and erlotinib (IC50 =?0.1?µM). Molecular docking was performed to study the mode of interaction of compounds 3a and 4b with EGFR kinase.  相似文献   

3.
Cytotoxic (+)-goniofufurone mimic such as benzoxepane 2 was preferentially formed after the treatment of 7-O-benzoyl-5-O-benzyl (+)-goniofufurone derivative 6 with titanium(IV) fluoride. However, the corresponding 7-epimer 5 (derivative of 7-epi-goniofufurone) under the similar reaction conditions gave mainly 7-deoxy derivative 7 as a result of an unexpected 1,5-hydride shift. Extension of this methodology to the enantiomer ent-6 provided cytotoxic (?)-goniofufurone mimics ent-2 and ent-7. Synthesized compounds showed diverse growth inhibitory effects against selected tumour cell lines, but were devoid of any significant toxicity towards the normal foetal lung fibroblasts (MRC-5). A SAR study reveals the structural features of these lactones that are beneficial for their antiproliferative activity, such as presence of an additional oxepane ring, the absolute stereochemistry and the presence of a deoxy function at the C-7 position.  相似文献   

4.
A series of 1,5-diazaanthraquinone derivatives was synthesized and their in vitro cytotoxic activities were evaluated against several human cancer cell lines. The 1,5-diazaanthraquinone chromophore has been synthesized either on the basis of hetero Diels–Alder reactions involving different quinoline-5,8-diones and ,β-unsaturated aldehyde N,N-dimethylhydrazones or by thermolysis of different arylaminomethylene Meldrum’s acid derivatives. Some of these compounds showed cytotoxic activity comparable to that of mitoxantrone against most of the cell lines tested. Compounds 20, 30, 31 and 37 were 4–54 times more potent that mitoxantrone against A549, H116, PSN1 and T98G cancer cell lines but, interestingly, they were 3–16 times less potent against the human breast carcinoma SKBR3. Some structure–activity relationships are described, the most significant one being the increase in cytotoxicity resulting from the introduction of a halogen atom at the C-4 position.  相似文献   

5.
Abstract

A novel series of 5-nitro-1H-benzimidazole derivatives substituted at position 1 by heterocyclic rings was synthesized. Cytotoxicity and antiviral activity of the new compounds were tested. Compound 3 was more active than doxorubicin against A-549, HCT-116 and MCF-7. However, compound 3 showed no activity against human liver carcinoma Hep G-2 cell line. Compounds 9 and 17b (E) showed potency near to doxorubicin against the four cell lines. The acute toxicity of compound 9 on liver cancer induced in rats was determined in vivo. Interestingly, it showed restoration activity of liver function and pathology towards normal as compared to the cancer-bearing rats induced by DENA. Compounds 17a (Z), 17b (E) and 18a (Z) were the most promising compounds for their antiviral activity against rotavirus Wa strain.  相似文献   

6.
A series of novel 11-O-carbamoyl clarithromycin ketolides were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed improved activity compared with references against erythromycin-resistant S. pneumoniae A22072 expressing the mef gene, S. pneumoniae B1 expressing the erm gene and S. pneumoniae AB11 expressing the mef and erm genes. In particular, compounds 9, 18, 19 and 22 showed the most potent activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.5 μg/mL. Furthermore, compounds 11, 18, 19, 24 and 29 were also found to exhibit favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.125–1 μg/mL, and moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372.  相似文献   

7.
We are seeking to develop more effective alkylating agents as antitumour agents. In previous work conformationally restricted nitrogen mustards were synthesised containing piperidine or pyrrolidine rings. The free bases were designed to be bifunctional alkylating agents via aziridinium ion formation and the effects of varying the distances between the two alkylating sites were studied. Some efficient cross-linkers of naked DNA were prepared but few of these compounds exhibited significant cytotoxicity in human tumour cells in vitro. We have extended this work by making tri- and tetra-azamacrocyclic compounds containing two to four potential alkylating sites. Most of these compounds were powerful DNA alkylating agents and showed cytotoxicity (IC(50) values 6-100microM) comparable with chlorambucil (45microM) and melphalan (8.5microM). In particular the cyclen derivative 2a was more than 10(4) times more effective at cross-linking DNA (2a XL(50)<10nM) than chlorambucil (XL(50) 100microM), and showed significant cytotoxicity in human tumour cells in vitro.  相似文献   

8.
A novel diterpenequinone named salvicine (4), structurally modified derivative of a natural product, and a series of the novel analogs have been prepared. Most of the analogs were found to be potently active against tumor cell lines in vitro. Further study on 4 in vivo demonstrated that it possessed a significant antineoplastic activity against murine S-180 Sarcoma and Lewis lung cancer, and human lung adenocarcinoma xenografts A-549 and LAX-83. The preclinical studies of 4 are now under way.  相似文献   

9.
As a result of our previous research focussed on benzimidazoles, herein we present design, synthesis, QSAR analysis and biological activity of novel N-substituted benzimidazole derived carboxamides. Carboxamides were designed to study the influence of the number of methoxy groups, the type of the substituent placed at the benzimidazole core on biological activity. Pronounced antioxidative activity displayed unsubstituted 28 (IC50 ≈ 3.78 mM, 538.81 mmolFe2+/mmolC) and dimethoxy substituted derivative 34 (IC50 ≈ 5.68 mM, 618.10 mmolFe2+/mmolC). Trimethoxy substituted 43 and unsubstituted compound 40 with isobutyl side chain at N atom showed strong activity against HCT116 (IC50 ≈ 0.6 µM, both) and H 460 cells (IC50 ≈ 2.5 µM; 0.4 µM), being less cytotoxic towards non-tumour cell. Antioxidative activity in cell generally confirmed relatively modest antioxidant capacity obtained in DPPH/FRAP assays of derivatives 34 and 40. The 3D-QSAR models were generated to explore molecular properties that have the highest influence on antioxidative activity.  相似文献   

10.
A series of novel 11-O-aralkylcarbamoyl-3-O-descladinosylclarithromycin derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed potent activity against erythromycin-susceptible S. pyogenes, erythromycin-resistant S. pneumoniae A22072 expressing the mef gene and S. pneumoniae AB11 expressing the mef and erm genes. Besides, most of the target compounds exhibited moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372. In particular, compounds 11a, 11b, 11c, 11e, 11f and 11h were found to exert favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.015–0.125?μg/mL. Furthermore, compounds 10e, 11a, 11b and 11c showed superior activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.25–0.5?μg/mL. Additionally, compound 11c was the most effective against all the erythromycin-resistant S. pneumoniae strains (A22072, B1 and AB11), exhibiting 8-, 8- and 32-fold more potent activity than clarithromycin, respectively.  相似文献   

11.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 μM and 19 μM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 μM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (< 5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other “single-chain” lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   

12.
Given that receptor tyrosine kinases (RTKs) have emerged as key regulators of all aspects of cancer development, including proliferation, invasion, angiogenesis and metastasis, the RTK family represents an important therapeutic target for anti-cancer drug development. Oxindole structure has been used in RTK inhibitors such as SU4984 and intedanib. In this study, two series of new heterocyclic compounds containing oxindole scaffold have been designed and synthesized, and their inhibitory activity against the proliferation of nine cancer cell lines has been evaluated. Among them, compounds 9a and 9b displayed the strongest anti-proliferative activity with the IC50s below 10 μM. Flow cytometric analysis showed that the compounds 9a and 9b dose-dependently arrested the cell cycle at G0/G1 phase. Although the leading compounds SU4984 and intedanib targets FGFR1, the kinase activity test revealed that these compounds only showed slight inhibitory activity on FGFR1 kinase. Further enzymatic test aided by molecular docking simulation in the ATP-binding site demonstrated that 9a and 9b are potent inhibitors of c-Kit kinase. These compounds are worthy of further evaluation as anticancer agents.  相似文献   

13.
The 2:1 and 1:2 adducts of Au(I) and 1:2 adducts of Ag(I) with the diphosphine 2,3-bis(diphenylphosphino)maleic acid (dpmaa) have been prepared in high yields. Crystal structures have been determined for the neutral digold complex (AuCl)2(dpmaa) · 2thf (1) and the bis-chelated complex [Au(dpmaa)2]Cl · H2O · CH3OH (2). For 1, conformational rigidity imposed by the ethylenic bridge facilitates the formation of short intramolecular Au-Au contacts with no evidence of similar intermolecular contacts. Complex 2 crystallizes with [Au(dpmaa)2]+ cations hydrogen bonded through the carboxyl groups to a water molecule and chloride anion to form a H-bonded chain along the a axis. 31P NMR titration of 1 with dpmaa in acetone shows conversion to 2 at Au:P-P ratios less than 1:1 indicating similar high thermodynamic and kinetic stabilities to other bis-chelated [Au(P-P)2]+ complexes containing 5- or 6-membered chelate rings. The ionic Au(I) complex 2 and the analogous Ag(I) complex [Ag(dpmma)2]NO3 (3) are highly water soluble. The in vitro cytotoxic activity of 2 was assessed against eight different cell lines and no significant activity was found. The solubility properties and solution behaviour of the complexes are compared to the analogous 1,2-bis(diphenylphosphino)ethane (dppe) complexes and the potential significance of these results to the antitumour properties of chelated 1:2 Au(I)diphosphine complexes are discussed.  相似文献   

14.
A series of 3,6-substituted 2,5-bis(1-aziridinyl)-1,4-benzoquinone derivatives was shown to alkylate calf thymus DNA and to form DNA interstrand cross-links. Alkylation and cross-link formation were enhanced after electrochemical reduction of the compounds and increased with lower pH in the pH range from 4.5 to 8.0. Reduction especially shifts the pH at which cross-linking and alkylation occurs to higher values, which are more physiologically relevant. This shift is probably caused by the increase in pKa value of the aziridine ring after reduction of the quinone moiety. The inactivation of single-stranded bacteriophage M13mp19 DNA to form phages in an E. coli host, by the 3,6-unsubstituted parent compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone (TW13) was dependent upon reduction and pH in a similar way as was alkylation. The compound in our series with the least bulky, 3,6-substitutents, TW13, caused a high amount of cross-link formation. Compounds with methyl-substituted aziridine rings showed low cross-linking ability. Our results support the concept that the protonated reduced compound is the reactive species that alkylates DNA, and that steric factors play an important role in the reactivity towards DNA. A correlation is observed between the ability to induce DNA interstrand cross-links and inactivation of M13mp19 bacteriophage DNA. Cross-link formation was also demonstrated in E. coli K12 cells, where the compounds are reduced endogenously by bacterial reductases.  相似文献   

15.
Abstract

In continuation of our research efforts toward the identification and optimization for novel inhibitors of interaction between human immunodeficiency virus type 1 integrase and cellular cofactor LEDGF/p75, we designed and synthesized a new series of 4-benzylindole derivatives. Most of the title compounds proved to be able to block this protein–protein interaction (PPI), with a percentage ranging from 30% to 90% at 100?µM. The most promising derivative was compound 10b showing IC50 value of 6.41?µM. The main structure–activity relationships (SAR) are discussed and rationalized by docking studies.  相似文献   

16.
A study on the use of 3'-directing groups for the synthesis of imidazole 2'-deoxy-4'-thionucleosides led to varying alpha:beta ratios in the glycosylation reaction. The para-nitrobenzoyl group gave the optimum result in the glycosylation step; therefore, this protected thiosugar 10b was used for the synthesis of a series of novel 2'-deoxy-4'-thio-imidazole nucleosides which have been evaluated for antiviral activity in vitro.  相似文献   

17.
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9–34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.  相似文献   

18.
Morphiceptin (Tyr-Pro-Phe-Pro-NH2), a tetrapeptide amide, is a selective ligand of the μ-opioid receptor (MOR). This study reports the synthesis and biological evaluation of a series of novel morphiceptin analogs modified in positions 2 or/and 4 by introduction of 4,4-difluoroproline (F2Pro) in l or d configuration. Depending on the fluorinated amino acid configuration and its position in the sequence, new analogs behaved as selective full MOR agonists showing high, moderate, or relatively low potency. The most potent analog, Tyr-F2Pro-Phe-d-F2Pro-NH2, was also able to activate the κ-opioid receptor (KOR), although with low potency. Docking studies and the comparison of results with the high resolution crystallographic structure of a MOR-agonist complex revealed possible structure–activity relationships of this compound family.  相似文献   

19.
A series of 11 new substituted 1,5-dihydro-4,1-benzoxazepine derivatives was synthesised to study the influence of the methyl group in the 1-(benzenesulphonyl) moiety, the replacement of the purine by the benzotriazole bioisosteric analogue, and the introduction of a bulky substituent at position 6 of the purine, on the biological effects. Their inhibition against isolated HER2 was studied and the structure–activity relationships have been confirmed by molecular modelling studies. The most potent compound against isolated HER2 is 9a with an IC50 of 7.31 µM. We have investigated the effects of the target compounds on cell proliferation. The most active compound (7c) against all the tumour cell lines studied (IC50 0.42–0.86 µM) does not produce any modification in the expression of pro-caspase 3, but increases the caspase 1 expression, and promotes pyroptosis.  相似文献   

20.
Protein kinase CK2 is a highly pleiotropic enzyme whose high constitutive activity is suspected to be instrumental to the enhancement of the tumour phenotype and to the propagation of infectious diseases. Here we describe a novel compound, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), which is superior to the commonly used specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in several respects. DMAT displays the lowest K(i) value ever reported for a CK2 inhibitor (40 nM); it is cell permeable and its efficacy on cultured cells, both in terms of endogenous CK2 inhibition and induction of apoptosis, is several fold higher than that of TBB. The selectivity of DMAT assayed on a panel of >30 protein kinases is comparable to that of TBB, with the additional advantage of being ineffective on protein kinase CK1 up to 200 microM. These properties make DMAT the first choice CK2 inhibitor for in vivo studies available to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号