首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiple measurement system for assessing sarcoplasmic reticulum (SR) Ca++-ATPase activity and Ca++-uptake was used to examine the effects of SR fractionation and quick freezing on rat white (WG) and red (RG) gastrocnemius muscle.In vitro measurements were performed on whole muscle homogenates (HOM) and crude microsomal fractions (CM) enriched in SR vesicles before and after quick freezing in liquid nitrogen. Isolation of the CM fraction resulted in protein yields of 0.96±0.1 and 0.99±0.1 mg/g in WG and RG, respectively. The percent Ca++-ATPase recovery for CM compared to HOM was 14.5% (WG) and 10.1% (RG). SR Ca++-activated Ca++-ATPase activity was not affected by quick freezing of HOM or CM, but basal ATPase was reduced (P<0.05) in frozen HOM (5.12±0.18–3.98±0.20 mole/g tissue/min in WG and from 5.39±0.20–4.48±0.24 mole/g tissue/min in RG). Ca++-uptake was measured at a range of physiological free [Ca++] using the Ca++ fluorescent dye Indo-1. Maximum Ca++-uptake rates when corrected for initial [Ca++]f were not altered in HOM or CM by quick freezing but uptake between 300 and 400nM free Ca++ was reduced (P<0.05) in quick frozen HOM (1.30±0.1–0.66±0.1 mole/g tissue/min in WG and 1.04±0.2–0.60±0.1 mole/g tissue/min in RG). Linear correlations between Ca++-uptake and Ca++-ATPase activity measured in the presence of the Ca++ ionophore A23187 were r=+0.25, (P<0.05) and r=+0.74 (P<0.05) in HOM and CM preparations, respectively, and were not altered by freezing. The linear relationships between HOM and CM maximum Ca++-uptake (r=+0.44, P<0.05) and between HOM and CM Ca++-ATPase activity (r=+0.34, P<0.05) were also not altered by tissue freezing. These data suggest that alterations in maximal SR Ca++-uptake function and maximal Ca++-ATPase activity may be measured in both HOM and CM fractions following freezing and short term storage. (Mol Cell Biochem139, 41–52, 1994)  相似文献   

2.
Summary Ca++-ATPase activity (cf. Ando et al. 1981) was examined both light- and electron-microscopically in the neurohypophysis of the guinea pig. Apart from a strong activity within the walls of the blood vessels, in the parenchyma of the neurohypophysis the reaction product of the Ca++-ATPase activity was restricted to the plasmalemma of the pituicytes. This reaction was completely dependent upon Ca++ and the substrate, ATP; the reaction was inhibited by 0.1 mM quercetin, an inhibitor of Ca++-ATPase. A reduction of the enzyme activity occurred by 1) adding Mg++ to the standard incubation medium, and 2) substituting Ca++ with Mg++ at varing concentrations. In all experiments the neurosecretory fibers were devoid of Ca++-ATPase activity. The function of the Ca++-ATPase activity in the plasmalemma of the pituicytes is discussed in connection with the regulation of the extracellular Ca++ concentration, which seems to be important with respect to the discharge of secretory material from the neurosecretory fibers.Fellow of the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany.  相似文献   

3.
Intracellular free calcium is regulated by Ca(++)-ATPase, one form present on the plasma membrane (PM Ca(++)-ATPase) and the other on sarcoplasmic (endoplasmic) reticulum (SR/ER Ca(++)-ATPase). An endogenous inhibitor of SR Ca(++)-ATPase from human placenta was shown to be present in normal placenta and the activity was not detectable in placenta from preeclamptic patients. The inhibitor was distributed in cytosol and microsomes. The inhibition of Ca(++)-ATPase by this inhibitor was concentration- and time-dependent. The inhibitor neither bound to DEAE- nor CM-sepharose resins at pH 7.5 and 8.5. Furthermore, it was heat stable for 15 min up to 55 degrees C and completely destroyed at 80 degrees C in a few minutes. It was also observed to be stable at room temperature for at least 3 months. The purification and characterization of this inhibitor would be valuable in achieving an understanding of the normal regulation of Ca(++)-ATPase in the placenta during pregnancy.  相似文献   

4.
Summary Ca++-ATPase activity was studied ultracytochemically (cf. Ando et al. 1981) in the paraphysis cerebri of the frog. An intense reaction was demonstrated on the plasmalemma of the microvilli at the apical pole of paraphyseal cells; in contrast, the basolateral plasmalemma showed only a slight staining. In addition, mitochondria, gap junctions, cilia, and cytoplasmic elements (e.g., microfilaments) displayed Ca++-ATPase activity. Variation of the Ca++-concentration in the incubation medium from 0.1 mM to 100 mM altered the Ca++-ATPase activity of the cell organelles. The substitution of Ca-by Mg-ions resulted in a conspicuous decrease in the enzyme activity, especially on the apical plasmalemma. Ca++-ATPase activity is claimed to be involved in a number of extra-and intracellular functions. In comparison to the epithelium of the adjacent choroid plexus the paraphyseal epithelial cell is thought to be a principal Ca-ion regulator of the cerebrospinal fluid in frogs.Fellow of the Alexander von Humboldt Foundation  相似文献   

5.
Summary The effects of the calmodulin blocker, trifluoperazine (TEP), on membrane-bound Ca++ -ATPase, Na+ -K+ -ATPase (EC 3.6.1.3.) and the ultrastructure of the enamel organ were investigated in the lower incisors of normal and TFP-injected rats. The rats, of about 100 g body weight, were given either 0.2 ml physiological saline or 100 g TFP dissolved in 0.2 ml physiological saline through a jugular vein and fixed by transcardiac perfusion with a formaldehyde-glutaraldehyde mixture at 1 and 2 h after TFP administration. Non-decalcified sections of the enamel organ less than 50 m in thickness, prepared from dissected lower incisors, were processed for the ultracytochemical demonstration of Ca++-ATPase and Na+-K+ -ATPase by the one-step lead method at alkaline pH. In control saline-injected animals the most intense enzymatic reaction of Ca++-ATPase was demonstrated along the plasma membranes of the entire cell surfaces of secretory ameloblasts. Moderate enzymatic reaction was also observed in the plasma membranes of the cells of stratum intermedium and papillary layer. Reaction precipitates of Na+-K+-ATPase activity were localized clearly along the plasma membranes of only the cells of stratum intermedium and papillary layer. The most drastic effect of TFP was a marked disappearance of enzymatic reaction of Ca++-ATPase from the plasma membranes of secretory ameloblasts, except for a weak persistent reaction in the basolateral cell surfaces of the infranuclear region facing the stratum intermedium. The cells of stratum intermedium and papillary layer, however, continued to react for Ca++-ATPase even after TFP treatment. Similarly, Na+-K+-ATPase activity in these cells was not inhibited by TFP administration. Ultrastructural examination of secretory ameloblasts revealed that administration of TFP caused no considerable cytological changes and did not act as a cytotoxic agent. These results suggest that secretory ameloblasts may have an active Ca++ transport system, which is modulated by an endogenous calmodulin.  相似文献   

6.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding.These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.  相似文献   

7.
Summary Ca++-ATPase activity was demonstrated histochemically at light- and electron-microscopic levels in inner and outer segments of retinal photoreceptor cells of the guinea pig with the use of a newly developed one-step lead-citrate method (Ando et al. 1981). The localization of ouabain-sensitive, K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity, which represents the second dephosphorylative step of the Na+-K+-ATPase system, was studied by use of the one-step method newly adapted for ultracytochemistry (Mayahara et al. 1980). In retinal photoreceptor cells fixed for 15 min in 2% paraformaldehyde the electron-dense Ca++-ATPase reaction product accumulated significantly on the inner membranes of the mitochondria but not on the plasmalemma or other cytoplasmic elements of the inner segments. The membranes of the outer segments remained unstained except the membrane arrays in close apposition to the retinal pigment epithelium. The cytochemical reaction was Ca++- and substrate-dependent and showed sensitivity to oligomycin. When Mg++-ions were used instead of Ca++-ions, a distinct reaction was also found on mitochondrial inner membranes.In contrast to the localization of the Ca++ -ATPase activity, the K+-NPPase activity was demonstrated only on the plasmalemma of the inner segments, but not on the mitochondria, other cytoplasmic elements or the outer segment membranes. This reaction was almost completely abolished by ouabain or by elimination of K+ from the incubation medium.Fellow of the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany  相似文献   

8.
The monoclonal antibody to the β-subunit of H+/K+-ATPase (mAbHKβ) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca2+-ATPase. We partially purified a mAbHKβ-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca2+-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca2+-ATPase. Synthesis of functional SR Ca2+-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca2+-ATPase synthesis.  相似文献   

9.
A detergent extract of dog or beef heart sarcolemmal vesicles was prepared and found to have a stimulatory effect on the Ca++-ATPase of plasma membranes from human erythrocyte and cardiac sarcolemma. A procedure is described which enriches the activating fraction. The protein nature of the preparation is illustrated by its sensitivity to boiling and to the proteolytic enzyme(s) trypsin and chymotrypsin. SDS polyacrylamide gels indicate that the protein(s) involved have a molecular weight of 56 and 60 kDa. The sarcolemmal activator can stimulate the Ca++-ATPase activity of the isolated enzyme more than 100% in the presence of saturating amounts of calmodulin. The activation is calcium dependent, being greatest at approximately 10µm Ca++, free, but does not change theK m for Ca++. A possible physiological role for the activator is discussed.  相似文献   

10.
The crystalline acid-protease of Paecilomyces varioti Bainier TPR-220 is most active toward casein as substrate, at pH 3.0 and 60°C, and stable at pH 3.0 to 6.0 below 40°C. The enzyme decomposes protein molecules into smaller fragments than pepsin does and is inhibited by p-chloromercuri-benzoate, monoiodoacetate, sodium lauryl sulfate, iodine, potassium permanganate, N-bromosuccinimide, bacitracin, nitrofurylacrylamide, and Hg+ ion, but affected neither by metal ion except Hg+ ion, nor metal chelating agent, soy bean trypsin inhibitor, potato-protease inhibitior, cysteine, diiso-propylfluorophosphate, cyanogen bromide, and heparin. The presence of Ca++, Co++, Cu++, Mg++, Sr++, and Zn++ ions prevents heat inactivation of the enzyme.  相似文献   

11.
Summary The Ca2+-ATPase from rat liver microsomes has been solubilized in Triton X-100 and purified to homogeneity by ficollsucrose treatment, column chromatography with agarose-hexane adenosine 5-triphosphate Type 2, and high pressure liquid chromatography (HPLC). The purified enzyme obtained by this sequential procedure exhibited a 183-fold increase in specific activity. After ficoll-sucrose treatment, the activity of the Ca2+-ATPase was stable for at least two weeks when stored at –70°C. In SDS-polyacrylamide gels, several fractions from HPLC chromatography showed a single band at a position corresponding to a molecular weight of about 107 kDa. This value is consistent with the molecular weight of the phosphoenzyme intermediate of endoplasmic reticulum (ER) Ca2+-ATPase. Further characterization of the ER Ca2+-ATPase was performed by western immunoblots. Antiserum raised against the 100-kDa sarcoplasmic reticulum (SR) Ca2+-ATPase cross-reacted with the purified Ca2+-ATPase from rat liver ER membranes.  相似文献   

12.
We have identified an endogenous inhibitor of cyclic nucleotide phosphodiesterase (PDE) activity in cultured human epithelial cells. The inhibitor was non-dialyzable, inactivated by trypsin and boiling, but stable to a 60° C, 30 min. treatment. Separation of inhibitor from PDE was achieved by blue dextran affinity chromatography. PDE was eluted from this column by EDTA, while the inhibitor remained bound and was subsequently eluted with buffer containing cyclic GMP. The inhibitor was active against PDE from several sources including both Ca++ dependent and Ca++ independent forms from bovine brain and retina respectively. These characteristics differentiate the PDE inhibitor from human epithelial cells from those previously described from various bovine tissues.  相似文献   

13.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

14.
The Ca2+-ATPase of skeletal sarcoplasmic reticulum was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC). When reconstitution occurred in the presence of PC and the acidic phospholipids, phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP), the Ca2+-uptake and Ca2+-ATPase activities were significantly increased (2–3 fold). The highest activation was obtained at a 50:50 molar ratio of PSYC and at a 10:90 molar ratio of PIP:PC. The skeletal SR Ca2+-ATPase, reconstituted into either PC or PC:PS proteoliposomes, was also found to be regulated by exogenous phospholamban (PLB), which is a regulatory protein specific for cardiac, slow-twitch skeletal, and smooth muscles. Inclusion of PLB into the proteoliposomes was associated with significant inhibition of the initial rates of Ca2+-uptake, while phosphorylation of PLB by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects. The effects of PLB on the reconstituted Ca2+-ATPase were similar in either PC or PC: PS proteoliposomes, indicating that inclusion of negatively charged phospholipid may not affect the interaction of PLB with the skeletal SR Ca2+-ATPase. Regulation of the Ca2+-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by crosslinking experiments, using a synthetic peptide which corresponded to amino acids 1–25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca2+-ATPase may be also regulated by phospholamban although this regulator is not expressed in fast-twitch skeletal muscles.  相似文献   

15.
An alkaline proteinase of Aspergillus sydowi (Bainier et Sartory) Thom et Church has been purified approximately 4.5-fold from a culture filtrate by fractionation with ammonium sulfate, treatment with acrynol and Alumina gel Cγ, and DEAE-Sephadex column chromatography. The purified proteinase obtained as needle crystals was monodisperse in both the ultracentrifuge and the electrophoresis on polyacrylamide gel.

The optimum pH and temperature for the activity were 8.0 and 40°C, respectively. Fifty per cent of the activity was lost at 45°C within ten minutes and 95% at 50°C. At 5°C, the enzyme was highly stable at the range of pH 6 to 9. None of metallic salts tested promoted the activity, but Zn++, Ni++ and Hg++ were found to be inhibitory. Sulfhydryl reagent, reducing and oxidizing reagents tested except iodine had no effect on the activity, but potato inhibitor, DFP and NBS caused a marked inhibition.

The alkaline proteinase from Aspergillus sydowi was markedly protected from inactivation by the presence of Ca++ in the enzyme solution. The protective effect of Ca++ was influenced remarkably by the pH values of the enzyme solution, i.e., optimum concentrations of Ca++ for the protective effect at pH 7.1, 7.5 and 7.8 were 10?2, 10?3 and 10?4 M, respectively. Conversely, at higher pH values such as 9.0, Ca++ accelerated the rate of inactivation. There was a parallelism between the loss in activity and the increase in ninhydrin-positive material in the enzyme solution.

The proteinase acted on various denaturated proteins, but not on native proteins. In digestion of casein by the proteinase, 92% of nitrogen was turned into soluble form in 0.2 m trichloroacetic acid solution, with 14~17% of peptide bonds being hydrolyzed. Casein hydrolyzed with the Asp. sydowi proteinase was further hydrolyzed by Pen. chrysogenum, B. subtilis or St. griseus proteinases, which further increased the free amino residues in the reaction mixtures. On the contrary, the Asp. sydowi proteinase reacted only slightly on casein hydrolyzed by the above-mentioned proteinases.  相似文献   

16.
The effect of oxidative stress on the Ca2+-ATPase activity, lipid peroxidation and protein modification of cardiac sarcoplasmic reticulum (SR) membranes was investigated. Isolated SR vesicles were exposed to FeSO4/EDTA (0.2 mol Fe2+ per mg of protein) at 37°C for 1 h in the presence or absence of antioxidants. FeSO4/EDTA decreased the maximum velocity of Ca2+-ATPase reaction without a change of affinity for Ca2+ or Hill coefficient. Treatment with radical-generating system led also to conjugated diene formation, loss of sulfhydryl groups, changes in tryptophan and bityrosine fluorescences and to production of lysine conjugates with lipid peroxidation end-products. Lipid antioxidants butylated hydroxytoluene (BHT) and stobadine partially prevented inhibition of Ca2+-ATPase and decrease in tryptophan fluorescence, while the loss of –SH groups and formation of bityrosines or lysine conjugates were completely prevented. Glutathione also partially protected Ca2+-ATPase activity and decreased formation of bityrosine, but it was not able to prevent oxidative modification of tryptophan and lysine. These findings suggest that combination of amino acid modifications, rather than oxidation of amino acids of one kind, is responsible for inhibition of SR Ca2+-ATPase activity.  相似文献   

17.
The uncoupling of Ca2+ transport from ATP hydrolysis in the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by trypsin digestion was re-investigated by comparing ATPase activity with the ability of the enzyme to occlude Eu3+ (a transport parameter) after various tryptic digests. With this method, re-examination of uncoupling by tryptic digest of the ATPase revealed that TD2 cleavage (Arg-198) had no effect on either occlusion or ATPase activity. Digestion past TD2 in the presence of 5 mM Co2+ and at 25°C resulted in the loss of about 70% of the ATPase activity, but no loss of occlusion. Digestion past TD2 in the presence of 5 mM Ca2+, 3 mM ATP, and at 25°C resulted in a partially uncoupled enzyme complex which retained about 50% of the ATPase activity, but completely lost the ability to occlude Eu3+. Digest past TD2 in the presence of 5 mM Ca2+ and 3 mM AMP-PNP. (a non-hydrolyzable ATP analog) at 25°C resulted in no loss of occlusion, thus revealing the absolute requirement of ATP during the digest to eliminate occlusion. From these findings we conclude that uncoupling of Ca2+ transport from ATPase activity is possible by tryptic digestion of the (Ca2+ + Mg2+)-ATPase. Interestingly, only after phosphorylation of the enzyme do the susceptible bond(s) which lead to the loss of occlusion become exposed to trypsin.  相似文献   

18.
M Kurebe 《Life sciences》1979,24(3):275-281
The delipidated Ca++-ATPase prepared from intestinal brush border membranes showed a higher activity of Ca++-independent ATPase, a lower Km value for ATP and a higher Km value for Ca++ than its original membrane Ca++-ATPase. The addition of phosphatidylcholine re-activated the delipidated Ca++-ATPase to approximately 89 % of its original membrane Ca++-ATPase activity but did not restore the affinity for Ca++. This phospholipid raised the Km value for ATP but had little effect on the Km value for Ca++. Palmitic acid elevated the Km value for Ca++ but did not change the Km value for ATP. Kinetic analyses of these data suggest that the hydrocarbon chain of phosphatidylcholine is an important rate-limiting factor for the access of Ca++ to the enzyme and the polar head groups of phosphorylcholine and ester bond may be the factor for the access of ATP.  相似文献   

19.
Diabetic cardiomyopathy is characterized by delayed cardiac relaxation. Delayed relaxation is suggested to be associated with sarcoplasmic reticulum (SR) dysfunction and/or increase in myofilament sensitivity to Ca2+. Although MCC-135, an intracellular Ca2+-handling modulator, accelerates the delayed relaxation without inotropic effect in the ventricular muscle isolated from rats with diabetic cardiomyopathy, the underlying mechanism has not been fully understood. We tested the hypotheses that MCC-135 modulates Ca2+ uptake by SR and myofilament sensitivity to Ca2+. Wistar rats were made diabetic by a single injection of streptozotocin (40 mg/kg i.v.). Seven months later, the left ventricular papillary muscle was isolated and skinned fibers with and without functional SR were prepared by treatment of the papillary muscle with saponin to study SR Ca2+ uptake and myofilament sensitivity to Ca2+, respectively. In diabetic rats, SR Ca2+ uptake was decreased, which was related to decrease in protein level of SR Ca2+-ATPase determined by western blot analysis. MCC-135 enhanced SR Ca2+ uptake in diabetic rats, but not in normal rats. In diabetic rats, maximum force was decreased but force at diastolic level of Ca2+ was increased, without significant change in myofilament sensitivity to Ca2+ compared with normal rats. MCC-135 decreased force at any pCa tested (pCa 7.0-4.4), but had no significant effect on myofilament sensitivity to Ca2+ in diabetic rats. These results suggest that MCC-135 enhances SR Ca2+ uptake and shifts force-pCa curve downward without modulating myofilament sensitivity to Ca2+. These effects may contribute to positive lusitropic effect without inotropic effect of MCC-135 observed in the ventricular muscle of diabetic cardiomyopathy.  相似文献   

20.
Uptake of [U-14C] glycine during the organophosphorus-ester-induced delayed neurotoxicity (OPIDN) development period was studied. Diisopropyl fluorophosphate (DFP), a delayed neurotoxic organophosphorus ester was administered to adult rats and hens. Results showed a decreased accumulation of glycine in hen cerebral cortex slices during the delayed neurotoxicity development period. An altered sensitivity toward transport inhibitors 2,4-dinitrophenol and ouabain was observed in DFP-treated hens. An altered neuronal membrane function during the OPIDN development period is reported in the present work. Brain Na+, K+-ATPase and Ca++-ATPase activities decreased during the neurotoxicity development period. The decrease in Ca++-ATPase activity persisted in hens until the complete development of neurotoxic symptoms. Decreased Ca++ pump activity is correlated with altered membrane function during OPIDN. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号