首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testosterone and ten of its metabolites were examined as inhibitors of butyrylcholinesterase. A significant enzyme inhibition activity (IC(50) = 1.55 microM) was observed for androst-4-en-3,7-dione. The kinetic parameters of butyrylcholinesterase inhibition were determined and molecular docking was carried out in order to develop a better understanding of the inhibitor-enzyme interactions. The results showed that the inhibition was non-competitive, stabilized mainly by hydrogen bonds and hydrophobic interactions between the inhibitor and butyrylcholinesterase.  相似文献   

2.
Triterpenoids are in the focus of scientific interest, and they were evaluated for many pharmacological applications among them their ability to act as inhibitors of cholinesterases. These inhibitors are still of interest as drugs that improve the life quality of patients suffering from age-related dementia illnesses especially of Alzheimer’s disease. Herein, we prepared several derivatives of ursolic and oleanolic acid and screened them in Ellman’s assays for their ability to inhibit acetylcholinesterase and/or butyrylcholinesterase, and for each of the active compounds the type of inhibition was determined. As a result, several compounds were shown as good inhibitors for acetylcholinesterase and butyrylcholinesterase even in a micromolar range. An ursolic acid derived hydroxyl-propinyl derivative 10 was a competitive inhibitor for butyrylcholinesterase with an inhibition constant of Ki = 4.29 μM, and therefore being twice as active as gold standard galantamine hydrobromide. The best inhibitor for acetylcholinesterase, however, was 2-methyl-3-oxo-methyl-ursoloate (18), acting as a mixed-type inhibitor showing Ki = 1.72 µM and Ki′ = 1.28 μM, respectively.  相似文献   

3.
To develop new drugs for treatment of Alzheimer’s disease, a group of N′-2-(4-Benzylpiperidin-/piperazin-1-yl)acylhydrazones was designed, synthesized and tested for their ability to inhibit acetylcholinesterase, butyrylcholinesterase and aggregation of amyloid beta peptides (1–40, 1–42 and 1–40_1–42). The enzyme inhibition assay results indicated that compounds moderately inhibit both acetylcholinesterase and butyrylcholinesterase. β-Amyloid aggregation results showed that all compounds exhibited remarkable Aβ fibril aggregation inhibition activity with a nearly similar potential as the reference compound rifampicin, which makes them promising anti-Alzheimer drug candidates. Docking experiments were carried out with the aim to understand the interactions of the most active compounds with the active site of the cholinesterase enzymes.  相似文献   

4.
The anticholinesterase activities of newly synthesized phosphorothioates and phosphorodithioates were investigated. The compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition potency through IC50 determination. The selectivities of the synthesized compounds toward both enzymes were determined and compared in terms of their molecular structures.  相似文献   

5.
Alkaloids have always been a great source of cholinesterase inhibitors. Numerous studies have shown that inhibiting acetylcholinesterase as well as butyrylcholinetserase is advantageous, and have better chances of success in preclinical/ clinical settings. With the objective to discover dual cholinesterase inhibitors, herein we report synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine (1) and its bromo-derivative 2. Our study has shown that cryptolepine (1) and its 2-bromo-derivative 2 are dual inhibitors of acetylcholinesterase and butyrylcholinesterase, the enzymes which are involved in blocking the process of neurotransmission. Cryptolepine inhibits Electrophorus electricus acetylcholinesterase, recombinant human acetylcholinesterase and equine serum butyrylcholinesterase with IC50 values of 267, 485 and 699 nM, respectively. The 2-bromo-derivative of cryptolepine also showed inhibition of these enzymes, with IC50 values of 415, 868 and 770 nM, respectively. The kinetic studies revealed that cryptolepine inhibits human acetylcholinesterase in a non-competitive manner, with ki value of 0.88 µM. Additionally, these alkaloids were also tested against two other important pathological events of Alzheimer’s disease viz. stopping the formation of toxic amyloid-β oligomers (via inhibition of BACE-1), and increasing the amyloid-β clearance (via P-gp induction). Cryptolepine displayed potent P-gp induction activity at 100 nM, in P-gp overexpressing adenocarcinoma LS-180 cells and excellent toxicity window in LS-180 as well as in human neuroblastoma SH-SY5Y cell line. The molecular modeling studies with AChE and BChE have shown that both alkaloids were tightly packed inside the active site gorge (site 1) via multiple π-π and cation-π interactions. Both inhibitors have shown interaction with the allosteric “peripheral anionic site” via hydrophobic interactions. The ADME properties including the BBB permeability were computed for these alkaloids, and were found within the acceptable range.  相似文献   

6.
Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC50) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.  相似文献   

7.
Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet.The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to standard carbamate drugs. Three compounds presented promising inhibition (in μM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent π–π or π–cationic interactions aside enzyme’s catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.  相似文献   

8.
Two series of non-symmetrical bisquaternary pyridinium–quinolinium and pyridinium–isoquinolinium compounds were prepared as molecules potentially applicable in myasthenia gravis treatment. Their inhibitory ability towards human recombinant acetylcholinesterase and human plasmatic butyrylcholinesterase was determined and the results were compared to the known effective inhibitors such as ambenonium dichloride, edrophonium bromide and experimental compound BW284C51.Two compounds, 1-(10-(pyridinium-1-yl)decyl)quinolinium dibromide and 1-(12-(pyridinium-1-yl)dodecyl)quinolinium dibromide, showed very promising affinity for acetylcholinesterase with their IC50 values reaching nM inhibition of acetylcholinesterase. These most active compounds also showed satisfactory selectivity towards acetylcholinesterase and they seem to be very promising as leading structures for further modifications and optimization. Two of the most promising compounds were examined in the molecular modelling study in order to find the possible interactions between the ligand and tested enzyme.  相似文献   

9.
Rivastigmine is a very important drug prescribed for the treatment of Alzheimer’s disease (AD) symptoms. It is a dual inhibitor, in that it inhibits both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). For our screening program on the discovery of new rivastigmine analogue hits for human butyrylcholinesterase (hBuChE) inhibition, we investigated the interaction of this inhibitor with BuChE using the complimentary approach of the biophysical method, saturation transfer difference (STD)-NMR and molecular docking. This allowed us to obtain essential information on the key binding interactions between the inhibitor and the enzyme to be used for screening of hit compounds. The main conclusions obtained from this integrated study was that the most dominant interactions were (a) H-bonding between the carbamate carbonyl of the inhibitor and the NH group of the imidazole unit of H434, (b) stacking of the aromatic unit of the inhibitor and the W82 aromatic unit in the choline binding pocket via π-π interactions and (c) possible CH/π interactions between the benzylic methyl group and the N-methyl groups of the inhibitor and W82 of the enzyme.  相似文献   

10.
An alcoholic extract obtained from the rhizomes of Gloriosa superba Linn (Colchicaceae) was screened for enzyme inhibition activities. The crude extract and its subsequent fractions including chloroform, ethyl acetate, n-butanol and aqueous were screened against lipoxygenase, actylcholinesterase, butyrylcholinesterase and urease. An outstanding inhibition on lipoxygenase was observed. The highest enzyme inhibition potency was expressed by the chloroform fraction (90%) among the tested fractions on lipoxygenase. Overall 67– 90% inhibition was found for lipoxygenase, 46-69% for acetylcholinesterase and 10–33% for butyrylcholinesterase, while urease was not inhibited.  相似文献   

11.
Isosorbide-2-benzylcarbamate-5-benzoate, a novel butyrylcholinesterase inhibitor, shows interspecies variation in its inhibitory activity (IC(50) of 4.3 nM for human plasma butyrylcholinesterase, but 1.09 microM for mouse plasma butyrylcholinesterase). Stability studies revealed that this drug is resistant to hydrolysis by human plasma (no degradation in 1 h). However, it was found to undergo rapid degradation when incubated with mouse plasma or mouse liver homogenate, yielding benzyl carbamate and benzoic acid. The addition of the carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) inhibited the degradation of the novel drug, indicating that it may be a substrate for both butyrylcholinesterase and carboxylesterase. The absence of carboxylesterase from human plasma explains the drug's stability in this medium. In vivo, pharmacodynamic studies on single doses of 1 mg/kg to na?ve male C57BL/6 mice revealed maximal plasma butyrylcholinesterase inhibition 20 min after intraperitoneal administration (approximately 60% inhibition) and 1 h after administration by gavage (approximately 45% inhibition). While this plasma butyrylcholinesterase inhibition was short-lived, the drug also penetrated the blood-brain barrier resulting in a slight (10-15%) but persistent (> or =72 h) reduction in brain butyrylcholinesterase activity.  相似文献   

12.
Isosorbide-2-carbamate-5-esters are highly potent and selective butyrylcholinesterase inhibitors with potential utility in the treatment of Alzheimer’s Disease (AD). They are stable in human plasma but in mouse plasma they undergo hydrolysis at the 5-ester group potentially attenuating in vivo potency. In this paper we explore the role of the 5-position in modulating potency. The focus of the study was to increase metabolic stability while preserving potency and selectivity. Dicarbamates and 5-keto derivatives were markedly less potent than the ester class. The 2-benzylcarbamate-5-benzyl ether was found to be potent (IC50 52 nM) and stable in the presence of mouse plasma and liver homogenate. The compound produces sustained moderate inhibition of mouse butyrylcholinesterase at 1 mg/kg, IP.  相似文献   

13.
Current treatments for Alzheimer's disease involve inhibiting cholinesterases. Conversely, cholinesterase stimulation may be deleterious. Homocysteine is a known risk factor for Alzheimer's and vascular diseases and its active metabolite, homocysteine thiolactone, stimulates butyrylcholinesterase. Considering the opposing effects on butyrylcholinesterase of homocysteine thiolactone and cholinesterase inhibitors, understanding how these molecules alter this enzyme may provide new insights in the management of dementia. Butyrylcholinesterase does not strictly adhere to Michaelis–Menten parameters since, at higher substrate concentrations, enzyme activation occurs. The substrate activation equation for butyrylcholinesterase does not describe the effects of inhibitors or non-substrate activators. To address this, global data fitting was used to generate a flexible equation based on Michaelis–Menten principles. This methodology was first tested to model complexities encountered in inhibition by imidazole of β-galactosidase, an enzyme that obeys Michaelis–Menten kinetics. The resulting equation was sufficiently flexible to permit expansion for modeling activation or inhibition of butyrylcholinesterase, while accounting for substrate activation of this enzyme. This versatile equation suggests that both the inhibitor and non-substrate activator examined here have little effect on the substrate-activated form of butyrylcholinesterase. Given that butyrylcholinesterase inhibition can antagonize stimulation of this enzyme by homocysteine thiolactone, cholinesterase inhibition may have a role in treating Alzheimer and vascular diseases related to hyperhomocysteinemia.  相似文献   

14.

Background

Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular, patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours beyond the normally brief half-life of succinylcholine. We hypothesized that intravenous administration of plant-derived recombinant BChE, which also prevents mortality in nerve agent poisoning, would rapidly reverse the effects of succinylcholine.

Methods

Recombinant butyrylcholinesterase was produced in transgenic plants and purified. Further analysis involved murine and guinea pig models of succinylcholine toxicity. Animals were treated with lethal and sublethal doses of succinylcholine followed by administration of butyrylcholinesterase or vehicle. In both animal models vital signs and overall survival at specified intervals post succinylcholine administration were assessed.

Results

Purified plant-derived recombinant human butyrylcholinesterase can hydrolyze succinylcholine in vitro. Challenge of mice with an LD100 of succinylcholine followed by BChE administration resulted in complete prevention of respiratory inhibition and concomitant mortality. Furthermore, experiments in symptomatic guinea pigs demonstrated extremely rapid succinylcholine detoxification with complete amelioration of symptoms and no apparent complications.

Conclusions

Recombinant plant-derived butyrylcholinesterase was capable of counteracting and reversing apnea in two complementary models of lethal succinylcholine toxicity, completely preventing mortality. This study of a protein antidote validates the feasibility of protection and treatment of overdose from succinylcholine as well as other biologically active butyrylcholinesterase substrates.  相似文献   

15.
Scaffold varied quaternized quinine and cinchonidine alkaloid derivatives were evaluated for their selective butyrylcholinesterase (BChE) inhibitory potential. Ki values were between 0.4–260.5 μM (non-competitive inhibition) while corresponding Kivalues to acetylcholinesterase (AChE) ranged from 7.0–400 μM exhibiting a 250-fold selectivity for BChE.Docking arrangements (GOLD, PLANT) revealed that the extended aromatic moieties and the quaternized nitrogen of the inhibitors were responsible for specific ππ stacking and π–cation interactions with the choline binding site and the peripheral anionic site of BChE’s active site.  相似文献   

16.
A novel series of chalcone derivatives (4a8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.  相似文献   

17.
Flavonoids are one of the largest classes of plant secondary metabolites and are known to possess a number of significant biological activities for human health. In this study, we examined in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of four flavonoid derivatives - quercetin, rutin, kaempferol 3-O-β-d-galactoside and macluraxanthone. The in vitro results showed that quercetin and macluraxanthone displayed a concentration-dependant inhibition of AChE and BChE. Macluraxanthone showed to be the most potent and specific inhibitor of both the enzymes having the IC50 values of 8.47 and 29.8 μM, respectively. The enzyme kinetic studies revealed that quercetin inhibited both the enzymes in competitive manner, whereas the mode of inhibition of macluraxanthone was non-competitive against AChE and competitive against BChE. The inhibitory profiles of the compounds have been compared with standard AChE inhibitor galanthamine. To get insight of the intermolecular interactions, the molecular docking studies of these two compounds were performed at the active site 3D space of both the enzymes, using ICM-Dock™ module. Docking studies exhibited that macluraxanthone binds much more tightly with both the enzymes than quercetin. The calculated docking and binding energies also supported the in vitro inhibitory profiles (IC50 values). Both the compounds showed several strong hydrogen bonds to several important amino acid residues of both the enzymes. A number of hydrophobic interactions could also explain the potency of the compounds to inhibit AChE and BChE.  相似文献   

18.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K) were in the range 0.05 to 5 microM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with nonpolar amino acids.  相似文献   

19.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K i) were in the range 0.05 to 5 μM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with non-polar amino acids.  相似文献   

20.
Based on the structural analysis of tricyclic scaffolds as butyrylcholinesterase (BuChE) inhibitors, a series of pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one derivatives were designed, synthesized and evaluated for their acetylcholinesterase (AChE) and BuChE inhibitory activity. Compounds with 5-carbonyl and 7- or/and 9-halogen substitutions showed potential BuChE inhibitory activity, among which compounds 6a, 6c and 6g showed the best BuChE inhibition (IC50?=?1.06, 1.63 and 1.63?µM, respectively). The structure–activity relationship showed that the 5-carbonyl and halogen substituents significantly influenced BuChE activity. Compounds 6a and 6g were found nontoxic, lipophilic and exhibited remarkable neuroprotective activity and mixed-type inhibition against BuChE (Ki?=?7.46 and 3.09?µM, respectively). Docking studies revealed that compound 6a can be accommodated into BuChE via five hydrogen bonds, one Pi–Sigma interaction and three Pi–Alkyl interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号