首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
生物多样性保护不仅包括对野生物种的保护,也包含对栽培和驯化物种的遗传多样性的保护,动植物检疫在保护栽培和驯化物种的安全和防止野生物种资源外流两个方面发挥了重要作用。可以认为,动植物检疫系统是生物多样性保护中的一支生力军。文章强调,一要加强动植物检疫,减少国际贸易对生物多样性的影响;二要增强口岸把关,有效地保护我国濒危、珍稀物种资源。文中例举了过去我国濒危、珍稀生物资源破坏和流失情况,并介绍了在加强对濒危、珍稀物种进出口管理中,动植物检疫机关所起的把关作用。  相似文献   

2.
Lipid signaling is involved in longevity regulation, but which specific lipid molecular species affect human biological aging remains largely unknown. We investigated the relation between complex lipids and DNA methylation-based metrics of biological aging among 4181 participants (mean age 55.1 years (range 30.0–95.0)) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. The absolute concentration of 14 lipid classes, covering 964 molecular species and 267 fatty acid composites, was measured by Metabolon Complex Lipid Panel. DNA methylation-based metrics of biological aging (AgeAccelPheno and AgeAccelGrim) were calculated based on published algorithms. Epigenome-wide association analyses (EWAS) of biological aging-associated lipids and pathway analysis were performed to gain biological insights into the mechanisms underlying the effects of lipidomics on biological aging. We found that higher levels of molecular species belonging to neutral lipids, phosphatidylethanolamines, phosphatidylinositols, and dihydroceramides were associated with faster biological aging, whereas higher levels of lysophosphatidylcholine, hexosylceramide, and lactosylceramide species were associated with slower biological aging. Ceramide, phosphatidylcholine, and lysophosphatidylethanolamine species with odd-numbered fatty acid tail lengths were associated with slower biological aging, whereas those with even-numbered chain lengths were associated with faster biological aging. EWAS combined with functional pathway analysis revealed several complex lipids associated with biological aging as important regulators of known longevity and aging-related pathways.  相似文献   

3.
Biologists and philosophers have long recognized the importance of species, yet species concepts serve two masters, evolutionary theory on the one hand and taxonomy on the other. Much of present-day evolutionary and systematic biology has confounded these two roles primarily through use of the biological species concept. Theories require entities that are real, discrete, irreducible, and comparable. Within the neo-Darwinian synthesis, however, biological species have been treated as real or subjectively delimited entities, discrete or nondiscrete, and they are often capable of being decomposed into other, smaller units. Because of this, biological species are generally not comparable across different groups of organisms, which implies that the ontological structure of evolutionary theory requires modification. Some biologists, including proponents of the biological species concept, have argued that no species concept is universally applicable across all organisms. Such a view means, however, that the history of life cannot be embraced by a common theory of ancestry and descent if that theory uses species as its entities.These ontological and biological difficulties can be alleviated if species are defined in terms of evolutionary units. The latter are irreducible clusters of reproductively cohesive organisms that are diagnosably distinct from other such clusters. Unlike biological species, which can include two or more evolutionary units, these phylogenetic species are discrete entities in space and time and capable of being compared from one group to the next.  相似文献   

4.
福建外来物种入侵现状及对经济社会和生态的影响   总被引:3,自引:0,他引:3  
福建已成为中国遭受外来物种入侵最严重的省份之一。本文概述了福建主要入侵物种的数量、种类、地理起源、分布、引入途径和入侵特点,系统分析了福建外来物种入侵严重的原因和外来物种入侵对福建生态安全、经济及社会的影响,在此基础上提出了针对外来物种入侵的防控对策。  相似文献   

5.
The correct explanation of why species, in evolutionary theory, are individuals and not classes is the cladistic species concept. The cladistic species concept defines species as the group of organisms between two speciation events, or between one speciation event and one extinction event, or (for living species) that are descended from a speciation event. It is a theoretical concept, and therefore has the virtue of distinguishing clearly the theoretical nature of species from the practical criteria by which species may be recognized at any one time. Ecological or biological (reproductive) criteria may help in the practical recognition of species. Ecological and biological species concepts are also needed to explain why cladistic species exist as distinct lineages, and to explain what exactly takes place during a speciation event. The ecological and biological species concepts work only as sub-theories of the cladistic species concept and if taken by themselves independently of cladism they are liable to blunder. The biological species concept neither provides a better explanation of species indivudualism than the ecological species concept, nor, taken by itself, can the biological species concept even be reconciled with species individualism. Taking the individuality of species seriously requires subordinating the biological, to the cladistic, species concept.  相似文献   

6.
Biological invasions and climate changes are the major causes of changes in biodiversity, which reduce, shift, and extinguish species ranges. While climate changes have been widely used in systematic conservation planning (SCP), biological invasions are rarely considered. Here, we combine the effects of climate changes and Artocarpus heterophyllus Lam. (Moraceae) invasion on the SCP for endemic aromatic fruit tree species from the Atlantic Forest (EFAF). We tested the effect of invasion on SCP measures of species turnover, biotic stability, and irreplaceability. Ecological niche models were used to establish species environmental suitability for the preindustrial period for both invasive species and EFAF and to forecast to the end of the century (2080–2100). We calculated the niche overlap between the invasive species and EFAF and tested the overlap significance using a null model. We tested the biological invasion effect on the results using results with no species invasion correction. The niche overlap between A. heterophyllus and EFAF was significant for 50% of species in the preindustrial period and for 33% in the future. The spatial patterns of species turnover, biotic stability, and irreplaceability had significant effects on biological invasion changing the spatial pattern in both shape and magnitude, which can misplace and overvalue conservation priorities. We showed that the disregard of biological invasion on SCP can cause negative effects on SCP under climate change. We strongly recommend accounting for biological invasion in the evaluation of SCP.  相似文献   

7.
物种与物种多样性   总被引:37,自引:4,他引:37  
周红章 《生物多样性》2000,8(2):215-226
本文首先讨论生物物种的科学概念和生物学本质,分析物种客观存在的自然属性和物种概念的局限性,认为物种的生物学属性和物种多样性的科学属性之间有着本质联系。物种多样性研究的实质是研究生物物种的生物学多样性。度量物种多样性程度有多种方法,但物种数目是物种多样性程度最直接、也是最基本的表达,估计物种多样性数目是当前国际上物种多样性研究的核心与热点内容。物种多样性产生的根源是物种形成,物种绝灭速率是维持物种多样性的关键因素。本文简要总结了物种形成与绝灭的基本模式和机制,通过分析生物地理区系与物种多样性研究的密切关系,说明物种的区系成份分析是物种多样性大尺度格局研究的重要内容。  相似文献   

8.
生物入侵是一个动态有序的过程,其发生和危害存在异质性,通常由来源地、入侵地和它们之间的连接构成的系统中的自然、生物、社会等因素所决定。网络理论是研究复杂系统的一种新方法,本质是从复杂的信息中抽象出规律、揭示系统的结构特征共性。近20年,网络理论已被应用于生物入侵研究。本研究综述了网络理论在生物入侵研究中的应用进展,明确了主要的研究方向和前沿热点,认为:2000年以来国际上已开展的研究集中在评估外来物种入侵风险和入侵后对生态系统影响2个方面;外来物种随运输网络入侵的风险评估和景观连接性对入侵物种扩散的影响、外来物种入侵对本地物种间互作网络的影响及生态群落可入侵性是网络理论应用的热点;研究热点具有明显的时间发展特征,2013年以前多是对生态系统的影响,近10年来主要是风险评估。我国利用网络理论研究外来物种入侵较少且集中于对生态系统的危害,未来应加强对外来物种的时空定量传入和扩散风险评估,为我国制定和提升外来入侵物种早期监测预警、阻止新的入侵、抑制进一步扩散的管理措施提供依据。  相似文献   

9.
Mating type in the Gibberella fujikuroi species complex is controlled by a single locus with two alleles and is usually identified following sexual crosses with standard, female-fertile tester isolates. The mating type alleles have been arbitrarily designated "+" and "-" within each biological species, and the nomenclature is tied to the standard tester strains. We developed a pair of PCR primers that can be used to amplify a unique fragment of one of the mating type alleles (MAT-2) from at least seven of the biological species in this species complex. Based on the amplification pattern, we propose a replacement for the existing, arbitrary +/- terminology that is presently in use. The new terminology is based on DNA sequence similarities between the mating type allele fragments from the biological species of the G. fujikuroi species complex and the corresponding fragments from other filamentous ascomycetes.  相似文献   

10.
Ideally, the estimates of biological diversity of a community of species in a habitat should refer to the biological variation among the species and not merely to their numbers and frequencies. However, the current estimates of biodiversity incorporate only the latter two components but not the biological differences among the species. Ganeshaiah et al. [(1997) Current Science 73: 128–133] have proposed an estimate called the Avalanche Index (AI) that can incorporate the biological heterogeneity among the species in a habitat. This estimate, besides being methodologically simple, can incorporate any quantifiable differences among the species, information on species richness and their frequencies in the habitat. In this paper we have estimated AI for tree vegetation in 14 forest types across different ecosystems of the world and have compared these estimates with other indices being currently used. Through this we have attempted to analyse the relative utility of AI in discriminating the habitats based on their biological heterogeneity by capturing their intra-community biological variation. We discuss the merits and demerits of the AI as a comprehensive estimate of biological diversity.  相似文献   

11.
The paper reports some observations on the subgenus Aedes (genus Aedes, Diptera, Culicidae) in northeast Italy. Two species were collected: Ae. cinereus and Ae. geminus, the latter recorded for the first time in Italy. Morphological, ecological and biological data of the two species are presented. The identification is possible only on the male hypopigium; larvae, pupae and adult females show no differential characters. For both species, the larval breeding sites were fresh water marshes mainly within woods; preimaginal development took place twice a year, in Spring and Autumn. The females were strongly anthropophilic. No biological differences between the two species were noticed, but more data are needed to ascertain their relationships and the presence of subtle biological divergences.  相似文献   

12.
The debate about the biological species concept - a review   总被引:1,自引:0,他引:1  
The importance of the species concept in biology has led to a continuing debate about the definition of species. This paper summarizes the recent literature in relation to the ‘biological species concept’ (MAYR 1942). Among the general attributes demanded, possible limitations of the universality and applicability of a species definition are discussed. Three different areas of criticism of the biological species concept are considered: 1. The impracticability of the criterion of reproductive isolation. The demand for more practical criteria is rejected, because reproductive isolation is seen as the factor that produces and maintains species as discrete entities in nature. 2. The inapplicability to non-bisexual organisms. A brief survey of modes of uniparental reproduction and their relative importance suggests that obligatory apomicts are of little evolutionary significance. 3. The inapplicability to multidimensional situations. Despite practical difficulties, the biological species concept is held to apply to organisms separated in space. The impossibility to delimit species in time by reproductive isolation is recognized. Out of two ways to divide continuous evolutionary lineages in time, the phylogenetic approach, which considers only speciation events (cladogenesis), is preferred as it is more objective. A list of recently published alternative definitions of species, none of which is found acceptable, is given. It is concluded that the biological species concept needs not be changed or dismissed on the basis of the discussed criticisms.  相似文献   

13.
姚一建  李熠 《生物多样性》2016,24(9):1020-414
物种是生物多样性与分类学研究的基本单元, 物种识别是生物学研究的基本问题之一。物种的划分一直以来都没有一个明确统一的标准, 这使得分类学多少带有主观的色彩, 并经常被看作艺术而不完全是科学的研究。本文简要概述了菌物分类学研究中常见的3个物种概念, 即形态学种、生物学种和系统发育学种的背景和应用现状, 并通过实例讨论了这3个物种概念的特点及应用中存在的问题, 特别是各个物种概念之间的交错, 以期为菌物分类学研究和物种概念探讨提供参考。  相似文献   

14.
Global change is increasing the occurrence of perturbation events on natural communities, with biological invasions posing a major threat to ecosystem integrity and functioning worldwide. Most studies addressing biological invasions have focused on individual species or taxonomic groups to understand both, the factors determining invasion success and their effects on native species. A more holistic approach that considers multispecies communities and species’ interactions can contribute to a better understanding of invasion effects on complex communities. Here we address biological invasions on species‐rich food webs. We performed in silico experiments on empirical vertebrate food webs by introducing virtual species characterised by different ecological roles and belonging to different trophic groups. We varied a number of invasive species traits, including their diet breadth, the number of predators attacking them, and the bioenergetic thresholds below which invader and native species become extinct. We found that simpler food webs were more vulnerable to invasions, and that relatively less connected mammals were the most successful invaders. Invasions altered food web structure by decreasing species richness and the number of links per species, with most extinctions affecting poorly connected birds. Our food web approach allows identifying the combinations of trophic factors that facilitate or prevent biological invasions, and it provides testable predictions on the effects of invasions on the structure and dynamics of multitrophic communities.  相似文献   

15.
以中国蜜环菌(Armillaria mellea (vahl: Fr.) Kummer)生物种B.生物种E分别与欧洲种A. gallica 和A. ostoyae交配,用AP—PCR技术分析了中国五个生物种及欧洲2个种的代表菌株的系统发育关系。根据系统聚类分析的结果,将其分为4个群:生物种B与A.Gallia, A与C,D与E,A. ostoyae 单独为一群。这与交配试验及RAPD图谱直观分析的结果一致,最小支撑树也支持将中国生物种B鉴定为A.Gallica。证明RAPD是研究蜜环菌生物种的进化关系的有用手段。  相似文献   

16.
Aim Ecologists seeking to describe patterns at ever larger scales require compilations of data on the global abundance and distribution of species. Comparable compilations of biological data are needed to elucidate the mechanisms behind these patterns, but have received far less attention. We assess the availability of biological data across an entire assemblage: the well‐documented demersal marine fauna of the United Kingdom. We also test whether data availability for a species depends on its taxonomic group, maximum body size, the number of times it has been recorded in a global biogeographic database, or its commercial and conservation importance. Location Seas of the United Kingdom. Methods We defined a demersal marine fauna of 973 species from 15 phyla and 40 classes using five extensive surveys around the British Isles. We then quantified the availability of data on eight key biological traits (termed biological knowledge) for each species from online databases. Relationships between biological knowledge and our predictors were tested with generalized linear models. Results Full data on eight fundamental biological traits exist for only 9% (n= 88) of the UK demersal marine fauna, and 20% of species completely lack data. Clear trends in our knowledge exist: fish (median biological knowledge score = six traits) are much better known than invertebrates (one trait). Biological knowledge increases with biogeographic knowledge and (to a lesser extent) with body size, and is greater in species that are commercially exploited or of conservation concern. Main conclusions Our analysis reveals deep ignorance of the basic biology of a well‐studied fauna, highlighting the need for far greater efforts to compile biological trait data. Clear biases in our knowledge, relating to how well sampled or ‘important’ species are suggests that caution is required in extrapolating small subsets of biologically well‐known species to ecosystem‐level studies.  相似文献   

17.
Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound implications for biological control. To better understand the causes of these interactions and their implications, we evaluate recent case studies of indirect nontarget effects of biological control agents in the context of theoretical work in community ecology. We find that although particular indirect nontarget effects are extremely difficult to predict, all indirect nontarget effects of host specific biological control agents derive from the nature and strength of the interaction between the biological control agent and the pest. Additionally, recent theoretical work suggests that the degree of impact of a biological control agent on nontarget species is proportional to the agent’s abundance, which will be highest for moderately successful control agents. Therefore, the key to safeguarding against indirect nontarget effects of host-specific biological control agents is to ensure the biological control agents are not only host specific, but also efficacious. Biological control agents that greatly reduce their target species while remaining host-specific will reduce their own populations through density-dependent feedbacks that minimize risks to nontarget species.  相似文献   

18.
Defining species accurately is a critical need in fundamental disciplines such as ecology and evolutionary biology and in applied arenas such as pest management. The validity of species designations depends on agreement of different methods of species diagnosis for unique biological species. The Bactrocera dorsalis complex of fruit flies provide an excellent opportunity for such a test of the congruence of different techniques (e.g. morphological, molecular, host-plant based, chemotaxonomy) used for species diagnosis. The complex contains a large number of closely-related species, is distributed over a wide geographical range in South-east Asia and considerable information has been compiled on some species. In the present study, the morphological and biological species boundaries were compared using new data from morphometric analyses of reproductive and body parts, together with a review of data on morphology, chemistry of male pheromones that are important in courtship and mating, molecular analyses, and endemic rainforest host plants. For the populations studied ( Bactrocera carambolae , Bactrocera dorsalis , Bactrocera occipitalis , Bactrocera papayae , Bactrocera philippinensis , Bactrocera kandiensis and Bactrocera invadens ) there appears to be significant congruence between the morphological and biological species boundaries.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 217–226.  相似文献   

19.
从大兴安岭和长白山采集到30号蜜环菌(Armillaria mellea)标本,选其中有代表性的10个号的担子果获得单孢株。交配试验表明每一担子果都具有双因子异宗配合系。不同子实体交配型之间交配结果表明,在大兴安岭和长白山地区蜜环菌目前至少存在5个生物种,分别称为生物种A、B、C、D和E。将这5个生物种的单孢菌种与欧洲5个蜜环菌生物种的单孢菌株进行配合,生物种B与欧洲A.gallica,生物种E与欧洲A.ostoyae亲和交配,因此将生物种B和E分别定为A.gallica和A.ostoyae。生物种A、C和D则不与任何欧洲生物种交配。  相似文献   

20.
《Biological Control》2006,36(3):330-337
Biologically based control methods offer many advantages for the control of invasive plant species; however, these methods are not without risks to native species. Thus, there is a need for more effective and efficient methods of risk analysis for biological control agents. We show how the process of ecological risk assessment established by the United States’ Environmental Protection Agency may be adapted to improve assessment of the risks of proposed biological control agents. We discuss the risks posed by weed biological control agents, and present a simple individual-based model of herbivorous insect movement and oviposition on two species of host plant, a target invasive plant species and a non-target native species, in simulated landscapes. The model shows that risks of non-target impacts may be influenced by the details of the movement behavior of biological control agents in heterogeneous landscapes. The specific details of insect movement that appear to be relevant are readily measured in field trials and the general modeling approach is readily adapted to real landscapes. Current biological control risk assessments typically emphasize effects analysis at the expense of exposure analysis; the modeling approach presented here provides a simple and feasible way to incorporate exposure analyses. We conclude that models such as ours should be given serious consideration as part of a comprehensive strategy of risk assessment for proposed weed biological control agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号