首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histidinol dehydrogenase (HDH, EC EC1.1.1.23) catalyses the final step in the biosynthesis of histidine and constitutes an attractive novel target for the development of new agents against the pathogenous, bacteria Brucella suis. A small library of new HDH inhibitors based on the L-histidinylphenylsulfonyl hydrazide scaffold has been synthesized and their inhibitory activity investigated. The obtained results demonstrate that modification of the group between the histidinyl moiety and the phenyl ring constitutes an important structural factor for the design of effective HDH inhibitors.  相似文献   

2.
Brucella spp. is the causative agent of brucellosis (Malta fever), which is the most widespread zoonosis worldwide. The pathogen is capable of establishing persistent infections in humans which are extremely difficult to eradicate even with antibiotic therapy. Moreover, Brucella is considered as a potential bioterrorism agent. Histidinol dehydrogenase (HDH, EC 1.1.1.23) has been shown to be essential for the intramacrophagic replication of this pathogen. It therefore constitutes an original and novel target for the development of anti-Brucella agents. In this work, we cloned and overexpressed the HDH-encoding gene from Brucella suis, purified the protein and evidenced its biological activity. We then investigated the inhibitory effects of a series of substituted benzylic ketones derived from histidine. Most of the compounds reported here inhibited B. suis HDH in the lower nanomolar range and constitute attractive candidates for the development of novel anti-Brucella agents.  相似文献   

3.
In order to investigate the control mechanism of histidinol dehydrogenase [HDH(I)] induction in Arthrobacter histidinolovorans, growth curves and induction experiments were carried out in presence of inhibitors of protein synthesis, namely chloramphenicol and actinomycin D. The evidence obtained from the gel electrophoresis patterns of the HDH activities in extracts of Arthrobacter cultures suggest that HDH(I) induction is regulated at the protein synthesizing complex level rather than at mRNA synthesis. A working model is proposed to explain the mode of control of HDH formation in this bacterium, which involves stable messenger formation and post-translation control by histidinol.  相似文献   

4.
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55–60°C and an apparent midpoint melting temperature (T m) of 70°C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48–57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.  相似文献   

5.
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDSPAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.  相似文献   

6.
V. V. Mosolov  M. N. Shul'gin 《Planta》1986,167(4):595-600
Specific protein inhibitors of microbial serine proteinases were isolated from wheat (Triticum aestivum L.), rye (Secale cereale L.) and triticale using affinity chromatography on subtilisin-Sepharose 4B. The wheat inhibitor had an isoelectric point (pI) at pH 7.2, while the rye inhibitor consisted of two forms with pI values of 6.8 and 7.1. In triticale, two components were present with pIs 7.2 and 6.8. All the inhibitors had M r values of approx. 20 000. The isolated proteins were effective inhibitors of subtilisins Carlsberg and BPN, and of fungal proteinases (EC 3.4.21.14) from the genus Aspergillus, but they were completely inactive against trypsin (EC 3.4.21.4) chymotrypsin (EC 3.4.21.1) and pancreatic elastase (EC 3.4.21.36). The inhibitors formed complexes with subtilisin in a molar ratio of 1:1. The results of chemical modifications seem to indicate that the isolated inhibitors have methionine residues in their reactive sites.Abbreviation pI isoelectric point  相似文献   

7.
The cDNA encoding human DNA helicase IV (HDH IV), a 100-kDa protein which unwinds DNA in the 5′ to 3′ direction with respect to the bound strand, was cloned and sequenced. It was found to be identical to the human cDNA encoding nucleolin, a ubiquitous eukaryotic protein essential for pre-ribosome assembly. HDH IV/nucleolin can unwind RNA-RNA duplexes, as well as DNA-DNA and DNA-RNA duplexes. Phosphorylation of HDH IV/nucleolin by cdc2 kinase and casein kinase II enhanced its unwinding activity in an additive way. The Gly-rich C-terminal domain possesses a limited ATP-dependent duplex-unwinding activity which contributes to the helicase activity of HDH IV/nucleolin.  相似文献   

8.
Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme which exhibited an apparent Km for acetaldehyde of 50 microM and a Vmax of 183 nmol/min. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is a soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH exhibited apparent Kms for hexadecanol of 1.6 and 2.8 microM in crude extracts derived from hexadecane- and hexadecanol-grown cells, respectively. HDH was distinct from ADH-A and ADH-B, since HDH and ADH-A were not coinduced; Eth1 had wild-type levels of HDH; and HDH requires NAD, while ADH-B requires NADP. NAD- and NADP-independent HDH activity was not detected in the soluble or membrane fraction of extracts derived from hexadecane- or hexadecanol-grown cells. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.  相似文献   

9.
We have previously reported that marked enhancement of the in vitro binding of lymphocytes to endothelial cell (EC) monolayers is observed after stimulation of the EC with interleukin 1 (IL 1). To determine whether new protein synthesis was required for this effect of IL 1, EC were incubated with IL 1 in the presence of cycloheximide or puromycin. Three different effects of these protein synthesis inhibitors on T-EC binding were observed. First, preincubation of the EC with both IL 1 and an inhibitor blocked the increase in binding if the inhibitor was present during both the preincubation and the 1 hr duration of the T-EC binding assay, suggesting that new protein synthesis is required for the enhancement of T-EC adhesion by IL 1. Second, preincubation of the EC with low doses of the inhibitors (0.1 to 1 microgram/ml) in the absence of IL 1 consistently increased T-EC binding, even if the inhibitors were present during the T-EC adhesion assay; in addition, the inhibitors additionally increased the stimulatory effect of IL 1 if the EC were washed free of the inhibitor before the assay step. The binding-enhancing effect of low concentrations of cycloheximide could be inhibited by an antibody to the CDw18 complex on the T cell, suggesting an up-regulation of the ligand on the EC involved in CDw18-dependent T cell adhesion. Third, higher concentrations of the inhibitors (3 to 10 micrograms/ml) were toxic for the EC in the presence of IL 1, possibly due to the combined blocking effect of IL 1 and inhibitors on EC protein synthesis.  相似文献   

10.
We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.  相似文献   

11.
The β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Clostridium perfringens (CpeCA) was recently characterised kinetically and for its anion inhibition profile. In the search of effective CpeCA inhibitors, possibly useful to inhibit the growth/pathogenicity of this bacterium, we report here an inhibition study of this enzyme with a panel of aromatic, heterocyclic and sugar sulphonamides/sulphamates. Some sulphonamides, such as acetazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, sulthiame and 4-(2-hydroxymethyl-4-nitrophenyl-sulphonamido)ethylbenzenesulphonamide were effective CpeCA inhibitors, with KIs in the range of 37.4–71.6?nM. Zonisamide and saccharin were the least effective such inhibitors, whereas many other aromatic and heterocyclic sulphonamides were moderate – weak inhibitors with KIs ranging between 113 and 8755?nM. Thus, this study provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

12.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   

13.
The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PKcs. This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.  相似文献   

14.
A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of two β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA 1 (Rv1284) and mtCA 3 (Rv3273). Both enzymes were inhibited with efficacies between the subnanomolar to the micromolar one, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. Aryl, arylalkyl-, heterocyclic as well as aliphatic and amino acyl such moieties led to potent mtCA 1 and 3 inhibitors in both the N-mono- and N,N-disubstituted dithiocarbamate series. This new class of β-CA inhibitors may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug/extensive multi-drug resistance.  相似文献   

15.
16.
A single-stranded DNA-dependent ATPase activity, consisting of two subunits of 83 kDa (p90) and 68 kDa (p70), was previously purified from HeLa cells (Vishwanatha, J.K. and Baril, E.F. (1990) Biochem 29, 8753–8759). Homology of the two subunits of single-stranded DNA-dependent ATPase with the human Ku protein (Caoet al. (1994) Biochem 33, 8548–8557) and identity of the Ku protein as the human DNA helicase II (Tutejaet al. (1994) EMBO J. 13, 4991–5001) have been reported recently. Using antisera raised against the subunits of the HDH II, we confirm that the Hela single-stranded DNA-dependent ATPase is the HDH II. Similar to the activity reported for Ku protein, ssDNA-dependent ATPase binds to double-stranded DNA and the DNA-protein complex detected by gel mobility shift assay consists of both the ATPase subunits. The p90 subunit is predominantly nuclear and is easily dissociated from chromatin. The p70 is distributed in cytosol and nucleus, and a fraction of the nuclear p70 protein is found to be associated with the nuclear matrix. Both the p90 and p70 subunits of the ATPase are present in G1 and S phase of the cell cycle and are rapidly degraded in the G2/M phase of the cell cycle.Abbreviations ssDNA single-stranded DNA - dsDNA double-stranded DNA - ATPase adenosine triphosphatase - HDH II human DNA helicase II - PGK 3-phosphoglycerate kinase  相似文献   

17.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

18.
Purification and properties of human DNA helicase VI.   总被引:3,自引:3,他引:0       下载免费PDF全文
A novel ATP-dependent DNA unwinding enzyme, called human DNA helicase VI (HDH VI), was purified to apparent homogeneity from HeLa cells and characterized. From 327 g of cultured cells, 0.44 mg of pure enzyme was recovered, free of DNA polymerase, ligase, topoisomerase, nicking and nuclease activities. The enzyme behaves as a monomer having an M(r) of 128 kDa, whether determined with SDS-PAGE, or in native conditions. Photoaffinity labelling with [alpha-32P]ATP labelled the 128 kDa protein. Only ATP or dATP hydrolysis supports the unwinding activity for which a divalent cation (Mg2+ > Mn2+) is required. HDH VI unwinds exclusively DNA duplexes with an annealed portion < 32 bp and prefers a replication fork-like structure of the substrate. It cannot unwind blunt-end duplexes and is inactive also on DNA-RNA or RNA-RNA hybrids. HDH VI unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand.  相似文献   

19.
Human DNA helicase II (HDH II) is a novel ATP-dependent DNA unwinding enzyme, purified to apparent homogeneity from HeLa cells, which (i) unwinds exclusively DNA duplexes, (ii) prefers partially unwound substrates and (iii) proceeds in the 3' to 5' direction on the bound strand. HDH II is a heterodimer of 72 and 87 kDa polypeptides. It shows single-stranded DNA-dependent ATPase activity, as well as double-stranded DNA binding capacity. All these activities comigrate in gel filtration and glycerol gradients, giving a sedimentation coefficient of 7.4S and a Stokes radius of approximately 46 A, corresponding to a native molecular weight of 158 kDa. The antibodies raised in rabbit against either polypeptide can remove from the solution all the activities of HDH II. Photoaffinity labelling with [alpha-32P]ATP labelled both polypeptides. Microsequencing of the separate polypeptides of HDH II and cross-reaction with specific antibodies showed that this enzyme is identical to Ku, an autoantigen recognized by the sera of scleroderma and lupus erythematosus patients, which binds specifically to duplex DNA ends and is regulator of a DNA-dependent protein kinase. Recombinant HDH II/Ku protein expressed in and purified from Escherichia coli cells showed DNA binding and helicase activities indistinguishable from those of the isolated protein. The exclusively nuclear location of HDH II/Ku antigen, its highly specific affinity for double-stranded DNA, its abundance and its newly demonstrated ability to unwind exclusively DNA duplexes, point to an additional, if still unclear, role for this molecule in DNA metabolism.  相似文献   

20.
Abstract

The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号