共查询到20条相似文献,搜索用时 15 毫秒
1.
Khodayar Gholivand Ahlam Madani Alizadegan Azam Anaraki Firooz Khosro Khajeh Hossein Naderi-manesh Hamidreza Bijanzadeh 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):105-111
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl22, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl24, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 μM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 1–4, according to IR, 1H, 13C and 31P NMR spectral data. 相似文献
2.
Gholivand K Abdollahi M Mojahed F Alizadehgan AM Dehghan G 《Journal of enzyme inhibition and medicinal chemistry》2009,24(2):566-576
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl-C6H4 1a, pBr-C6H4 2a, C6H5 3a, and pMe-C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl-C6H4 1b, pBr-C6H4 2b, C6H5 3b, pMe-C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE. 相似文献
3.
Nazar Trotsko Agata Przekora Justyna Zalewska Grażyna Ginalska Agata Paneth Monika Wujec 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):17-24
In our present research, we synthesised new thiazolidine-2,4-diones (12–28). All the newly synthesised compounds were evaluated for antiproliferative and antibacterial activity. Antiproliferative evaluation was carried out using normal human skin fibroblasts and tumour cell lines: A549, HepG2, and MCF-7. The IC50 values were determined for tested compounds revealing antiproliferative activity. Moreover, safety index (SI) was calculated. Among all tested derivatives, the compound 18 revealed the highest antiproliferative activity against human lung, breast, and liver cancer cells. More importantly, the derivative 18 showed meaningfully lower IC50 values when compared to the reference substance, irinotecan, and relatively high SI values. Moreover, newly synthesised compounds were screened for the bacteria growth inhibition in vitro. According to our screening results, most active compound was the derivative 18 against Gram-positive bacteria. Therefore, it may be implied that the novel compound 18 appears to be a very promising agent for anticancer treatment. 相似文献
4.
Khodayar Gholivand Fresia Mojahed Marjan Salehi Hossein Naderi-Manesh Khosro Khajeh 《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):521-525
Two novel structurally related phosphoramidate compounds, 1 and 2, with likely β-diketone system were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. Compound 2 exhibited a 31P NMR signal which was significantly shielded (8 ppm) relative to compound 1. Determination of human erythrocyte acetylcholinesterase (hAChE) inhibitory activity was carried out according to Ellman's modified kinetic method and the IC50 values of compounds 1 and 2 were 1.567 and 2.986 mM, respectively. The ki values of 1 and 2 were 1.39 to 2.65 min? 1 respectively. A comparison of the bimolecular rate constant (ki) and IC50 values for the irreversible inhibitors 1 and 2 revealed that the oxono analogue has greater affinity for hAChE than the thiono compound. Furthermore effects of two conventional oximes paralidoxime (A) and obidoxime (B) on reactivation of the inhibited hAChE were studied but low reactivity was shown by both the oximes. 相似文献
5.
Results on the screening of species of the lichen family Graphidaceae for superoxide-scavenging activity (SSA) and xanthine-oxidase inhibitory (IXO) activity have been presented. The potential of the extracts for scavenging of superoxide and inhibition of xanthine-oxidase under various physiological conditions has been evaluated. The methanolic extracts of the species of family Graphidaceae showed inhibitory properties of xanthine oxidase (IC50 = 2.0 to 5.26 microg/ml) with an additional superoxide scavenging capacity (IC50 = 3.63 to 13.88 microg/ml). The potential of the methanolic extracts for scavenging of superoxide and inhibition of xanthine oxidase remained stable at 4 degrees C. Thus the extracts can be maintained for longer periods for their therapeutic uses. 相似文献
6.
All the equilibrium conformations of 34 analogues of acetylcholine (ACh) with the general formula R-C(O)O-Alk-N+(CH3)3 are calculated by the method of molecular mechanics. In the series R-C(O)O-(CH2)2-N+(CH3)3, a reliable correlation is found between the molecular volume of the substrate and the rate of its hydrolysis by acetylcholinesterase (AChE); the absence of such a correlation is demonstrated for butyryl-cholinesterase (BChE). Theoretical conformational analysis confirms that the completely extended tt conformation of ACh is productive for the hydrolysis by AChE, which agrees with the results of X-ray analysis of AChE. AChE is shown to hydrolyze only those substrates that form equilibrium conformers compatible in the mutual arrangement of trimethylammonium group, carbonyl carbon, and carbonyl oxygen with the tt conformation of ACh; in this case, the rate of substrate hydrolysis depends on the total population of these conformers. A reliable correlation was found between the population of the semifolded (tg?) conformation of the choline moiety of substrate molecules and rate of their BChE hydrolysis. In a series of CH3-C(O)O-Alk-N+(CH3)3, the rate of BChE hydrolysis is demonstrated to depend on the total population of conformations compatible in the mutual arrangement of functionally important atoms with the tg? conformation of ACh. The tg? conformation of ACh is concluded to be productive for BChE hydrolysis. Similar orientations of the substrate molecules relative to the catalytic triads of both AChE and BChE are proven to coincide upon the substrate productive sorption in their active sites. It is hypothesized that the sorption stage is rate-limiting in cholinesterase hydrolysis and the enzyme hydrolyzes the ACh molecule in its energetically favorable conformation. 相似文献
7.
Chiara Gasparetti Emilia Nordlund 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(4):598-607
Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5 mM dopachrome the oxygen consumption rate of TrT on 8 mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone. 相似文献
8.
Daisuke Sawada Tomoyuki Katayama Yuya Tsukuda Nozomi Saito Masashi Takano Hiroshi Saito Ken-ichiro Takagi Eiji Ochiai Seiichi Ishizuka Kazuya Takenouchi Atsushi Kittaka 《Bioorganic & medicinal chemistry letters》2009,19(18):5397-5400
We synthesized and isolated 2α-substituted analogs of 14-epi-previtamin D3 after thermal isomerization at 80 °C for the first time. The VDR binding affinity and transactivation activity of osteocalcin promoter in HOS cells were evaluated, and the 2α-methyl-substituted analog was found to have greater genomic activity than 14-epi-previtamin D3. 相似文献
9.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):715-719
Serum paraoxonase (aryldialkylphosphatase, EC 3.1.8.1., PON1) is an esterase protein synthesised by the liver and released into the serum, where it is associated with HDL lipoproteins. In this study, we have determined the in vitro effects of the following antibiotics: sodium ampicillin, ciprofloxacin, Rifamycin SV and clindamiycin phosphate, on human hepatoma (HepG2) cells (liver hPON1). All the antibiotics caused a dose-dependent and time-dependent decrease in the paraoxonase activity while Rifamycin SV was the most effective antibiotic due to its low 50% inhibition concentration (IC50) value. Liver hPON1 activity was determined using paraoxon as a substrate. The IC50 values of the drugs were calculated from graphs of hydratase activity (%) by plotting concentration of the drugs that showed an inhibition effect. 相似文献
10.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):827-835
Some new α-aminomethylenephosphonic acids 1–11 were synthesised and characterised by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The potencies of these compounds to inhibit human erythrocyte acetylcholinesterase (hAChE, EC 3.1.1.7) were studied by a modified Ellman’s method. In addition, the log P values were computed by Hyperchem software. Here, alendronate was used as a reference inhibitor. Results showed that the IC50 values ranged from 9.11 to 28.72?mM. The half maximal inhibitory concentration (IC50) value decreased with an increasing number of carbon atoms of the amine group in compounds 1–5. Also, in most cases, increasing the number of carbon atoms led to enhancement of the toxicity as predicted by the log P values. Using Lineweaver-Burk and Dixon analysis, it was indicated that compounds 1–10 are mixed inhibitors while compound 11 is a coupling or uncompetitive inhibitor. The results showed that the electronic changes have ignorable effects, steric influence is important in some cases, but the lipophilicity parameter is the most significant factor in hAChE inhibition by bisphosphonates. 相似文献
11.
Xiao SH Farrelly E Anzola J Crawford D Jiao X Liu J Ayres M Li S Huang L Sharma R Kayser F Wesche H Young SW 《Analytical biochemistry》2007,367(2):179-189
Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available. 相似文献
12.
Saied Ghadimi Ali Asghar Ebrahimi Valmoozi Mehrdad Pourayoubi Keyvan Asad Samani 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):556-561
Phosphoramido acid esters (CH3)2NP(O)X(p-OC6H4-CH3) (containing P-Cl (1), P-O (2), P-F (3), P-CN (5), and P-N (4,6) bonds, X for 2, 4 and 6 is OCH3, (C2H5)2N and morpholin) have been synthesized to investigate the structure-activity study of AChE enzyme inhibition, through the parameters logP, δ31P and IC50. After their characterization by 31P, 31P{1H}, 13C, 1H NMR, IR and mass spectroscopy, the parameters logP and δ31P (31P chemical shift in NMR) were used to evaluated the lipophilicity and electronical properties. The ability of compounds to inhibit human AChE was predicted by PASS software (version 1.193), and experimentally evaluated by a modified Ellman's assay. 相似文献
13.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues. 相似文献
14.
Lo MC Wang M Kim KW Busby J Yamane H Zondlo J Yuan C Young SW Xiao SH 《Analytical biochemistry》2008,376(1):122-130
Malonyl-CoA decarboxylase (MCD) catalyzes the conversion of malonyl-CoA to acetyl-CoA and thereby regulates malonyl-CoA levels in cells. Malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase-1, a key enzyme involved in the mitochondrial uptake of fatty acids for oxidation. Abnormally high rates of fatty acid oxidation contribute to ischemic damage. Inhibition of MCD leads to increased malonyl-CoA and therefore decreases fatty acid oxidation, representing a novel approach for the treatment of ischemic heart injury. The commonly used MCD assay monitors the production of NADH fluorometrically, which is not ideal for library screening due to potential fluorescent interference by certain compounds. Here we report a luminescence assay for MCD activity. This assay is less susceptible to fluorescent interference by compounds. Furthermore, it is 150-fold more sensitive, with a detection limit of 20 nM acetyl-CoA, compared to 3 μM in the fluorescence assay. This assay is also amenable to automation for high-throughput screening and yields excellent assay statistics (Z′ > 0.8). In addition, it can be applied to the screening for inhibitors of any other enzymes that generate acetyl-CoA. 相似文献
15.
Park JY Jeong HJ Kim YM Park SJ Rho MC Park KH Ryu YB Lee WS 《Bioorganic & medicinal chemistry letters》2011,21(18):5602-5604
As part of our ongoing effort to develop influenza virus neuraminidase (NA) inhibitors from various medicinal plants, we utilized bioassay-guided fractionation to isolated six alkylated chalcones (1-6) from Angelica keiskei. Xanthokeistal A (1) emerged as new compound containing the rare alkyl substitution, 6,6-dimethoxy-3-methylhex-2-enyl. When we tested the ability of these individual alkyl substituted chalcones to inhibit influenza virus NA hydrolysis, we found that 2-hydroxy-3-methyl-3-butenyl alkyl (HMB) substituted chalcone (3, IC(50)=12.3 μM) showed most potent inhibitory activity. The order of potency of substituted alkyl groups on for NA inhibition was HMB>6-hydroxyl-3,7-dimethyl-octa-2,7-dienyl>dimethylallyl>geranyl. All NA inhibitors screened were found to be reversible noncompetitive inhibitors. 相似文献
16.
Akhter S Kutuzova GD Christakos S DeLuca HF 《Archives of biochemistry and biophysics》2007,460(2):227-232
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption. 相似文献
17.
The preparation and the antibacterial activity of alaremycin derivatives such as their CF3-derivatives and (R)- and (S)-4-oxo-5-acetylaminohexanoic acid for the porphobilinogen synthase (PBGS), were described. The IC50 values of the antibacterial activity of the prepared materials for the inhibitor of PBGS, were determined using PBGS assay. 相似文献
18.
Hydroxylated metabolites of polychlorinated biphenyls (OHPCBs) interact with rat sulfotransferase 1A1 (rSULT1A1) as substrates and inhibitors. Previous studies have shown that there are complex and incompletely understood structure–activity relationships governing the interaction of rSULT1A1 with these molecules. Furthermore, modification of the enzyme with glutathione disulfide (GSSG) results in the conversion of some OHPCBs from inhibitors to substrates. We have now examined estimated values for the acid-dissociation constant (Ka) and the octanol–water distribution coefficient (D), as well as experimentally determined dissociation constants for enzyme complexes, to assist in the prediction of interactions of OHPCBs with rSULT1A1. Under reducing conditions, initial velocities for rSULT1A1-catalyzed sulfation exhibited a positive correlation with pKa and a negative correlation with log D of the OHPCBs. IC50 values of inhibitory OHPCBs decreased with decreasing pKa values for both the glutathione (GSH)-pretreated and GSSG-pretreated forms of rSULT1A1. Comparison of GSH- and GSSG-pretreated forms of rSULT1A1 with respect to binding of OHPCB in the presence and absence of adenosine 3′,5′-diphosphate (PAP) revealed that the dissociation constants with the two redox states of the enzyme were similar for each OHPCB. Thus, pKa and log D values are useful in predicting the binding of OHPCBs to the two redox forms of rSULT1A1 as well as the rates of sulfation of those OHPCBs that are substrates. However, the differences in substrate specificity for OHPCBs that are seen with changes in redox status of the enzyme are not directly related to specific structural effects of individual OHPCBs within inhibitory enzyme–PAP–OHPCB complexes. 相似文献
19.
Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts 总被引:1,自引:0,他引:1
Amaryllidaceous plants produce pharmacologically active alkaloids, galanthamine being the most interesting for its use in the treatment of Alzheimer's disease as a cholinesterase inhibitor. The aim of this work was to test 23 pure Amaryllidaceae alkaloids and 26 extracts from different species of the genus Narcissus for their acetylcholinesterase inhibitory activity using galanthamine as a reference. Only seven alkaloids, belonging to the galanthamine and lycorine skeleton types, exhibited such an effect, sanguinine being the most active, even more than galanthamine. All the extracts with the highest acetylcholinesterase inhibitory activity contained galanthamine except that of N. assoanus, a lycorine type alkaloid-bearing species. 相似文献
20.
Prema B. Rapuri J.C. Gallagher Zafar Nawaz 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):368
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells. 相似文献