首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six novel triorganotin(IV) 2-maleimidopropanoato complexes: R3SnOCOCH3(CH)(COCH)2, (R: Me(l), Et(2), n-Pr(3), n-Bu(4), Ph(5), Bz(6) have been synthesized. Their solid-state configuration has been determined by FT IR and lI9mSn M?ssbauer spectroscopy. The tin(IV) atom is five-coordinated in all the complexes with 2-maleimidopropanoic acid behaving as a monoanionic bidentate ligand coordinating the tin(IV) atom through a chelating or bridging carboxylate group. The solution-state configuration has been elucidated by means of 1H-, 13C- and 119Sn-NMR spectroscopy which assigned a tetrahedron. Elemental analysis and FAB MS data also supported a 1:1 metal to ligand stoichiometry. The title complexes have been screened in vitro for anti-tumour, anti-fungal, anti-leishmanial and urease inhibition activities and displayed promising results.  相似文献   

2.
Diorganotin(IV) complexes of N-acetyl-l-cysteine (H2NAC; (R)-2-acetamido-3-sulfanylpropanoic acid) have been synthesized and their solid and solution-phase structural configurations investigated by FTIR, Mössbauer, 1H, 13C and 119Sn NMR spectroscopy. FTIR results suggested that in R2Sn(IV)NAC (R = Me, Bu, Ph) complexes NAC2− behaves as dianionic tridentate ligand coordinating the tin(IV) atom, through ester-type carboxylate, acetate carbonyl oxygen atom and the deprotonated thiolate group. From 119Sn Mössbauer spectroscopy it could be inferred that the tin atom is pentacoordinated, with equatorial R2Sn(IV) trigonal bipyramidal configuration. In DMSO-d6 solution, NMR spectroscopic data showed the coordination of one solvent molecule to tin atom, while the coordination mode of the ligand through the ester-type carboxylate and the deprotonated thiolate group was retained in solution. DFT (Density Functional Theory) study confirmed the proposed structures in solution phase as well as the determination of the most probable stable ring conformation. Biological investigations showed that Bu2SnCl2 and NAC2 induce loss of viability in HCC cells and only moderate effects in non-tumor Chang liver cells. NAC2 showed lower cytotoxic activity than Bu2SnCl2, suggesting that the binding with NAC2− modulates the marked cytotoxic activity exerted by Bu2SnCl2. Therefore, these novel butyl derivatives could represent a new class of anticancer drugs.  相似文献   

3.
《Inorganica chimica acta》1988,144(2):249-252
The complex formation between organotin chlorides and 2-pyridinecarboxaldehyde thiosemicarbazone (PT) has been investigated. In only one case is a substitution reaction observed whereas in all other cases, 1:1 addition complexes are formed. The solid state configurations of the complexes have been studied by 119mSn Mössbauer and far infrared spectroscopy. The chelating ligand (PT) functions as a bidentate ligand towards diorganotin chlorides giving octahedral coordination geometry around the tin atom.  相似文献   

4.
Dialkyltin(IV) and trialkyltin(IV) complexes of the deacetoxycephalo-sporin-antibiotic cephalexin [7-(d-2-amino-2-phenylacetamido)-3-methyl-3-cephem-4-carboxylic acid] (Hceph) have been synthesized and investigated both in solid and solution phase. Analytical and thermogravimetric data supported the general formula Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O (Alk=Me, n-Bu), while structural information has been gained by FT-IR, (119)Sn M?ssbauer and (1)H, (13)C, (119)Sn NMR data. In particular, IR results suggested polymeric structures both for Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O. Moreover, cephalexin appears to behave as monoanionic tridentate ligand coordinating the tin(IV) atom through ester-type carboxylate, as well as through beta-lactam carbonyl oxygen atoms and the amino nitrogen donor atoms in Alk(2)SnOHceph(.)H(2)O complexes. On the basis of (119)Sn M?ssbauer spectroscopy it could be inferred that tin(IV) was hexacoordinated in such complexes in the solid state, showing skew trapezoidal configuration. As far as Alk(3)Sn(IV)ceph(.)H(2)O derivatives are concerned, cephalexin coordinated the Alk(3)Sn moiety through the carboxylate acting as a bridging bidentate monoanionic group. Again, (119)Sn M?ssbauer spectroscopy led us to propose a trigonal configuration around the tin(IV) atom, with R(3)Sn equatorial disposition and bridging carboxylate oxygen atoms in the axial positions. The nature of the complexes in solution state was investigated by using (1)H, (13)C and (119)Sn NMR spectroscopy. Finally, the cytotoxic activity of organotin(IV) cephalexinate derivatives has been tested using two different chromosome-staining techniques Giemsa and CMA(3), towards spermatocyte chromosomes of the mussel Brachidontes pharaonis (Mollusca: Bivalvia). Colchicinized-like mitoses (c-mitoses) on slides obtained from animals exposed to organotin(IV) cephalexinate compounds, demonstrated the high mitotic spindle-inhibiting potentiality of these chemicals. Moreover, structural damages such as "chromosome achromatic lesions", "chromosome breakages" and "chromosome fragments" have been identified through a comparative analysis of spermatocyte chromosomes from untreated specimens (negative controls) and specimens treated with the organotin(IV) complexes.  相似文献   

5.
The reaction of Sn(tmtaa)Cl2 (H2tmtaa=5,14-dihydro-6,8,15,17-tetramethyldi-benzo[b,i][1,4,8,11]tetraazacyclotetradecine) and ammonium thiocyanate or sodium azide under a mild condition resulted in trans six-coordinate tmtaa tin(IV) complexes, Sn(tmtaa)X2 (X=NCS, 1; X=N3, 2). However, the treatment of Sn(tmtaa)Cl2 and sodium picrate produced Sn(tmtaa)(Cl)(OC6H2 (2,4,6-3NO2)) (3). Only one chloro atom of Sn(tmtaa)Cl2 was substituted because of low nucleophilicity of the 2,4,6-trinitrophenolic anion in 3. Furthermore, because of the steric hindrance between the 2,4,6-trinitrophenolic group and the tmtaa ligand, which has a non-planar, saddle-shaped conformation, two chloro atoms cannot be substituted by two 2,4,6-trinitrophenolic groups simultaneously. All complexes were characterized by IR spectra, UV spectra, mass spectra, NMR spectra and elemental analyses, as well as DSC measurements. X-ray crystal structures of 1 and 3 reveal that the complexes retain the characteristic saddle-shaped configuration of H2tmtaa but have adopted the trans geometry. Solid state 119Sn NMR spectroscopy was used to study the bonding environment in the series of six-coordinate trans Sn(IV) tmtaa complexes. It can be found that the 119Sn chemical shifts of the Sn(IV) tmtaa complexes are almost not influenced by the substituents.  相似文献   

6.
New organotin(IV) complexes of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp) with 1:1 and/or 1:2 stoichiometry were synthesized and investigated by X-ray diffraction, FT-IR and 119Sn Mössbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution. Moreover, the crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 are reported. The complexes contain hexacoordinated tin atoms: in Et2SnCl2(dbtp)2 two 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine molecules coordinate classically the tin atom through N(3) atom and the coordination around the tin atom shows a skew trapezoidal structure with axial ethyl groups. In Ph2SnCl2(EtOH)2(dptp)2 two ethanol molecules coordinate tin through the oxygen atom and the 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the OH group of the ethanol moieties; Ph2SnCl2(EtOH)2(dptp)2 has an all-trans structure and the C-Sn-C fragment is linear. On the basis of Mössbauer data, the 1:2 diorganotin(IV) complexes are advanced to have the same structure of Et2SnCl2(dbtp)2, while Me2SnCl2(dptp)2 to have a regular all-trans octahedral structure. A distorted cis-R2 trigonal bipyramidal structure is assigned to 1:1 diorganotin(IV) complexes. The in vitro antibacterial activities of the synthesized complexes have been tested against a group of reference pathogen micro-organisms and some of them resulted active with MIC values of 5 μg/mL, most of all against staphylococcal strains, which shows their inhibitory effect.  相似文献   

7.
A series of organotin(IV) complexes with Schiff base ligand pyruvic acid 3-hydroxy-2-naphthoyl hydrazone [R2SnLY]2, L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = CH3OH (1), R = n-C4H9, Y = N (2), R = PhCH2 (3), R = Ph, Y = CH3OH (4), R = Me, (5) and [R3SnLY], L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = H2O, (6), R = Ph (7), R = Me (8) have been synthesized. These complexes have been characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal and molecular structure of complexes 1, 2 and 6 have been determined by X-ray single crystal diffraction. Results showed that complex 1 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. The complex 2 has a monoclinic structure and the central tin atom is rendered six-coordinate in octahedrally configuration with a planar of SnO3N unit and two apical aryl C atoms. And the whole structure consists of molecular units connected by weak intermolecular Sn?N and O-H?N interactions. In the complex 6, the central tin atom is five-coordinate in distorted trigonal-bipyramidal geometry.  相似文献   

8.
A series of organotin (IV) compounds of the type [R3SnL]2, R is Me (1), Bu (2), [R2SnL]2, R is Ph (3), Me (4), Bu (5), L is pyruvic acid thiophene-2-carboxylic hydrazone, and R2SnL, R is Me (6), Bu (7), Ph (8), L is salicylaldehyde thiophene-2-carboxylic hydrazone have been synthesized in 1:1 molar ratio. All compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR and 119Sn NMR spectra. The crystal structure of compounds 1, 3, 4, 8 have been determined by X-ray single crystal diffraction analyses, study found that the compounds 1 and 3 are rendered one-dimensional chain structure and the tin atoms are five-coordinated in a distorted trigonal-bipyramidal geometry. The compound 4 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. While the compound 8 is a monomer in which the tin atom adopts five-coordinated in distorted trigonal-bipyramidal geometry.  相似文献   

9.
Two chlorodiorganotin(IV) complexes of 4-(2-methoxyphenyl)piperazine-1-carbodithioate (MPPDA) have been synthesized by 1:1 mole-ratio reactions of the parent acid (MPPDAH) with Me2SnCl2 or Et2SnCl2 in dry methanol. The products have been characterized by Raman and multinuclear NMR (1H, 13C and 119Sn) spectroscopy, elemental analysis, and mass spectrometry. Single-crystal X-ray diffraction studies indicate that both complexes have distorted trigonal bipyramidal geometries around the central Sn atom.  相似文献   

10.
The reaction of ethyldiphenyltin(IV) iodide with silver benzoate in ethanol results in the formation of bis(benzoato)ethylphenyltin(IV), EtPhSn[OC(O)C6H5]2 (1), by the cleavage of a phenyl group bound to tin. The reaction of ethyldiphenyltin(IV) iodide with silver acetate provides acetatoethyldiphenyltin(IV), EtPh2SnOC(O)CH3 (2). Similarly, the reaction of diphenylpropyltin(IV) iodide with silver acetate affords acetatodiphenyl-n-propyltin(IV), Ph2PrSnOC(O)CH3 (3). These three complexes were characterized by elemental analysis, mass spectrometry, and infrared spectroscopy (IR), as well as 1H, 13C, and 119Sn NMR. The molecular structures of three complexes were also verified by single-crystal X-ray analyses. The X-ray structures show that 1 adopts a skew-trapezoidal bipyramidal structure, while 2 and 3 are rare, cyclic hexameric structures.  相似文献   

11.
Novel triorganotin(IV) complexes of two beta-lactamic antibiotics, 6-[D-(-)-beta-amino-p-hydroxyphenyl-acetamido]penicillin (=amoxicillin) and 6-[D-(-)-alpha-aminobenzyl]penicillin (=ampicillin), have been synthesized and investigated both in solid and solution states. The complexes corresponded to the general formula R(3)Sn(IV)antib*H(2)O (R=Me, n-Bu, Ph; antib=amox=amoxicillinate or amp=ampicillinate). Structural investigations about configuration in the solid state have been carried out by interpreting experimental IR and 119Sn M?ssbauer data. In particular, IR results suggested polymeric structures both for R(3)Sn(IV)amox.H(2)O and R(3)Sn(IV)amp*H(2)O. Moreover, both antibiotics appear to behave as monoanionic bidentate ligands coordinating the tin(IV) atom through ester-type carboxylate, as well as through the beta-lactamic carbonyl. Evidence that in none of these compounds water molecules were involved in coordination, was provided by thermogravimetric investigations. On the basis of 119Sn M?ssbauer spectroscopy it can be inferred that tin(IV) was pentacoordinate in all of the complexes in the solid state, showing an equatorial R(3)Sn(IV) trigonal bipyramidal (tbp) configuration. The nature of the complexes in solution state was investigated by using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, while an 119Sn spectrum was obtained for n-Bu(3)Sn(IV)amp*H(2)O. Although 1H- and 13C-NMR measurements suggested that in dimethyl sulfoxide (DMSO)-d(6) solution the polymeric structure collapsed, due to a solvolysis process of the beta-lactamic carbonyl bonding to the organometallic moiety, the complexes have been shown to maintain the same trigonal bipyramidal configuration at tin(IV) atom by the coordination of a DMSO molecule. Cytotoxic activity of these novel semisynthetic antibiotic derivatives has been tested towards spermatocyte chromosomes of the mussel Brachidontes pharaonis (Mollusca: Bivalvia) using two different chromosome-staining techniques such as Giemsa and CMA(3). The occurrence of typical colchicinized-like (c-like) mitoses on slides obtained from animals exposed to organotin compounds, directly confirmed the high mitotic spindle-inhibiting potency of these chemicals. In addition, by comparative analysis of spermatocyte chromosomes from untreated specimens (negative controls) and specimens treated with the triorganotin(IV) complexes, structural damages such as 'achromatic lesions' and 'chromosome breakages' have been identified.  相似文献   

12.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}di-n-butyltin(IV) complexes has been synthesized and characterized by 1H-, 13C-, 119Sn NMR, ESI-MS (electrospray ionization mass spectrometry), IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The structures of four di-n-butyltin(IV) complexes, viz., nBu2Sn(L3)2 (3), nBu2Sn(L4)2 (4), nBu2Sn(L5)2 (5) and nBu2Sn(L7)2 · 0.5C6H6 (7) (LH = 5-[(E)-2-(aryl)-1-diazenyl)quinolin-8-ol) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn and 13C NMR spectroscopic results. The in vitro cytotoxicity of di-n-butyltin(IV) complexes (3-8) is reported against seven well characterized human tumour cell lines. The basicity of the two quinolinolato donor N and O atoms of the ligands are discussed in relation to the cytotoxicity data.  相似文献   

13.
The synthesis of new zirconium and hafnium mixed ligand phthalocyanine complexes PcM(β-ketoester)2, where M-Zr (IV), Hf (IV); Pc - the dianion of phthalocyanine, and β-ketoester - the out planed ligand, is reported. The obtained complexes are characterized by 1H NMR, IR, UV-Vis spectroscopy and cyclic voltammetry. 1H NMR and elemental analysis confirm the substitution of two Cl atoms for two β-ketoester fragments to the central atom of the macrocycle. The data of 1H NMR, UV-Vis spectroscopy have allowed us to conclude that two β-ketoester ligands are in the cis geometry to the phthalocyanine plane. X-ray crystallography for bis(isopropyl 3-oxobutanoato)hafnium(IV)phthalocyanine confirms this conclusion. The central macrocycle of the phthalocyanine ligand is not exactly planar (deviations from the least-square plane exceed 0.15 Å) and has the conformation of an essentially flattened crown. The Hf(1) atom is 1.349(3) above this least-square plane. Cyclic voltammetry investigation shows that the introduction of two β-ketoester ligands to the central atom of phthalocyanine complex leads to both chemical and electrochemical stabilization of the whole Pc system.  相似文献   

14.
Novel 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4′-methylbenzoyl) hydrazone (H2L) (1) and its two copper(II) complexes have been synthesized. Single-crystal X-ray diffraction studies revealed that the structure of the new copper(II) chloride complex, [Cu(H2L)Cl2]·2H2O (2), is square pyramidal and that of the copper(II) nitrate complex, [Cu(HL)NO3]·DMF (3), is square planar. In 2, the copper atom is coordinated by the ligand with ONO donor atoms, one chloride ion in the apical position, and the other chloride in the basal plane. In 3, the ligand coordinates as a uninegative tridentate ONO species and with one nitrate ion in the basal plane. DNA binding experiments indicated that the ligand and copper(II) complexes can interact with DNA through intercalation. Bovine serum albumin binding studies revealed that the compounds strongly quench the intrinsic fluorescence of bovine serum albumin through a static quenching process. Antioxidative activity tests showed that 1 and its copper(II) complexes have significant radical scavenging activity against free radicals. Cytotoxic activities of the ligand and copper(II) complexes showed that the two copper(II) complexes exhibited more effective cytotoxic activity against HeLa and HEp-2 cells than the corresponding ligand. The entire biological activity results showed that the activity order was 1 < 2 < 3.  相似文献   

15.
A series of diorganotin (IV) complexes of the types of R2SnCl(SSCC3H3N2) (R = CH31, nBu 2, C6H53 and C6H5CH24), R2Sn(SSCC3H3N2)2 (R = CH35, nBu 6, C6H57 and C6H5CH28) and R2Sn(SSCC3H2N2) (R = CH39, nBu 10, C6H511 and C6H5CH212) have been obtained by reactions of 4(5)-imidazoledithiocarboxylic acid with diorganotin (IV) dichlorides in the presence of sodium ethoxide. All complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Also, the complexes 1, 7 and 9 are characterized by X-ray crystallography diffraction analyses, which reveal that the complex 1 is monomeric structure with five-coordinate tin (IV) atom, the complex 7 is monomeric structure with six-coordinate tin (IV) atom and the complex 9 is one-dimensional chain with five-coordinate tin (IV) atom.  相似文献   

16.
Six new triorganotin(IV) complexes, [R3Sn(O2SeC6H4Cl)]n (R = Me 1; Ph 2), [R3Sn(O2SeC6H4Me)]n (R = Me 3; Ph 4), [R3Sn(O2SeC6H4Bu)]n (R = Me 5; Ph 6) have been synthesized by the reaction of 4-chlorobenzeneseleninic acid, p-Tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, and X-ray crystallography. Crystal structures show that all of the complexes exhibit 1D infinite chain structures which are generated by the bidentate oxygen atoms and the five-coordinated tin centers.  相似文献   

17.
A novel macrocyclic di-n-butyltin(IV) complex 1 was synthesized by the reaction of di-n-butyltin(IV) oxide and 2-mercapto-4-methyl-5-thiazoleacetic acid. Characterization of the complex 1 was achieved using elemental analysis, IR, 1H, 13C and 119Sn NMR spectra and X-ray diffraction. X-ray data of the complex 1 revealed that it is an unusual macrocycle containing the bridging-S-S-linkages and tetranuclear ladder based on a planar four-membered Sn2O2 ring. In the so-called ladder structure, there are two distinct tin environments, the endocyclic tin atom is best described as five-coordinate and the exocyclic tin atom as six-coordinate.  相似文献   

18.
A structural study of the products of the reaction of R3SnIV derivatives (R = Me, Bun, Ph) with 6-thiopurine, 6-TPH2, and its sodium salt, 6-TPHNa, has been undertaken using Mössbauer spectroscopy and the point-charge model rationalization of the Mössbauer parameter nuclear quadrupole splitting. The synthetic reactions have been carried out at ca. 0 °C, 20 °C and 50 °C. The Mössbauer spectra of the complexes AlK3Sn(6-TPH) are consistent with the occurrence of two distinct tin(IV) sites in samples prepared at the lower temperature, while one only site appears by increasing the temperature of the reaction. Two tin sites constantly occur in the products of the reactions involving the Ph3SnIV moiety; the stoichiometry is assumed to be (Ph3Sn)3(6-TPH)(6-TP) for the uniquely-formed complex. Solid state polymeric structures with trigonal bipyramidal environments of the tin atoms and planar SnC3 skeletons have been proposed. The apical ligand atoms have been assumed to be N, S and N, N in the samples showing two individual tin(IV) sites, and N, N when a single site was present.  相似文献   

19.
A number of complexes have been prepared by the reaction between 2,2′-azopyridine(AZP) and tin(IV) halides and organotin(IV) halides, and characterized by elemental analysis and infrared and variable temperature 119Sn Mössbauer spectroscopies. All of the new compounds have 1:1 stoichiometry, with the AZP ligand occupying two coordination sites by bonding through one of the ring and one of the azo group nitrogen atoms, to give rise to distorted octahedral structures. In the diorganotin complexes the two organic groups occupy trans positions. The infrared and Mössbauer spectroscopic data suggest that these compounds are monomeric in the solid state.  相似文献   

20.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号