首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Pursuing on our efforts toward searching for efficient hCA IX and hCA XII inhibitors, herein we report the design and synthesis of new sets of benzofuran-based sulphonamides (4a,b, 5a,b, 9a–c, and 10a–d), featuring the zinc anchoring benzenesulfonamide moiety linked to a benzofuran tail via a hydrazine or hydrazide linker. All the target benzofurans were examined for their inhibitory activities toward isoforms hCA I, II, IX, and XII. The target tumour-associated hCA IX and XII isoforms were efficiently inhibited with K Is spanning in ranges 10.0–97.5 and 10.1–71.8?nM, respectively. Interestingly, arylsulfonehydrazones 9 displayed the best selectivity toward hCA IX and XII over hCA I (SIs: 39.4–250.3 and 26.0–149.9, respectively), and over hCA II (SIs: 19.6–57.1 and 13.0–34.2, respectively). Furthermore, the target benzofurans were assessed for their anti-proliferative activity, according to US-NCI protocol, toward a panel of sixty cancer cell lines. Only benzofurans 5b and 10b possessed selective and moderate growth inhibitory activity toward certain cancer cell lines.  相似文献   

2.
Abstract

In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.  相似文献   

3.
Abstract

Cholinesterase inhibitor plays an important role in the treatment of patients with Alzheimer’s disease (AD). Herein, we report the medicinal chemistry efforts leading to a new series of 1,3-dimethylbenzimidazolinone derivatives. Among the synthesised compounds, 15b and 15j showed submicromolar IC50 values (15b, eeAChE IC50?=?0.39?±?0.11?µM; 15j, eqBChE IC50?=?0.16?±?0.04?µM) towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Kinetic and molecular modelling studies revealed that 15b and 15j act in a competitive manner. 15b and 15j showed neuroprotective effect against H2O2-induced oxidative damage on PC12 cells. This effect was further supported by their antioxidant activity determined in a DPPH assay in vitro. Morris water maze test confirmed the memory amelioration effect of the two compounds in a scopolamine-induced mouse model. Moreover, the hepatotoxicity of 15b and 15j was lower than tacrine. In summary, these data suggest 15b and 15j are promising multifunctional agents against AD.  相似文献   

4.
A series of N-substituted and N,N-disubstituted β-amino acids and their derivatives bearing benzenesulfonamide moiety were designed and synthesized in search of compounds that would be high-affinity and selective inhibitors of human carbonic anhydrases (CA). There are 12 catalytically active human CA isoforms, the cytosolic CA I, CA II, CA III, CA VII, and CA XIII, secreted CA VI, the mitochondrial CA VA and CA VB, membrane-associated CA IV, and transmembrane CA IX, CA XII, and CA XIV. The di-bromo meta-substituted compounds exhibited low nanomolar dissociation constants and over 10-fold selectivity for mitochondrial isozyme CA VB, implicated in diseases of the central nervous system and obesity. These compounds can be used for further development as inhibitors of significant binding affinity and selectivity towards CA VB isozyme.  相似文献   

5.
The members of a focused series of carboxylic acids and of their derivatives (esters, amides and metal complexes) have been investigated as inhibitors of the main cytosolic/transmembrane carbonic anhydrase isoforms, CA I, II, IX and XII, belonging to the mammalian α-class of CAs. These enzymes are present in red blood cells in submillimolar concentration, and typical sulfonamide CA inhibitors do not selectively inhibit any of them. Among such isozymes, the isoform-I is an 'orphan' target that mediates hemorrhagic retinal and cerebral vascular permeability, involved in retinal and cerebral disease. In the present study, we identified the first selective CA I nanomolar inhibitors, that displayed activity against other isozymes in micromolar/millimolar concentration range. Selective CA II over CA I inhibition has also been observed with some diketo acids/metal complexes. Few diketo acid derivatives showed inhibition activities against the fungal β-class enzymes from Candida albicans and Cryptococcus neoformans in low micromolar concentration range. Prediction of drug-like properties for the most interesting compounds suggests a favorable bioavailability.  相似文献   

6.
Peripherally selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Herein, we describe our medicinal chemistry approach to discover peripheral-selective noradrenaline reuptake inhibitors to avert the risk of P-gp-mediated DDI at the blood–brain barrier. We observed that steric shielding of the hydrogen-bond acceptors and donors (HBA and HBD) of compound 1 reduced the multidrug resistance protein 1 (MDR1) efflux ratio; however, the resulting compound 6, a methoxyacetamide derivative, was mainly metabolized by CYP2D6 and CYP2C19 in the in vitro phenotyping study, implying the risk of PK variability based on the genetic polymorphism of the CYPs. Replacement of the hydrogen atom with a deuterium atom in a strategic, metabolically hot spot led to compound 13, which was mainly metabolized by CYP3A4. To our knowledge, this study represents the first report of the effect of deuterium replacement for a major metabolic enzyme. The compound 13, N-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-[(2H3)methyloxy]acetamide hydrochloride, which exhibited peripheral NET selective inhibition at tested doses in rats, increased urethral resistance in a dose-dependent manner.  相似文献   

7.
Peripheral-selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Here, we describe our medicinal chemistry approach to discover a novel series of highly potent, peripheral-selective, and orally available noradrenaline reuptake inhibitors with a low multidrug resistance protein 1 (MDR1) efflux ratio by cyclization of an amide moiety and introduction of an acidic group. We observed that the MDR1 efflux ratio was correlated with the pKa value of the acidic moiety. The resulting compound 9 exhibited favorable PK profiles, probably because of the effect of intramolecular hydrogen bond, which was supported by a its single-crystal structure. The compound 9, 1-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-oxo-1,2-dihydropyridine-3-carboxylic acid hydrochloride, which exhibited peripheral NET-selective inhibition at tested doses in rats by oral administration, increased urethral resistance in a dose-dependent manner.  相似文献   

8.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

9.
Treatment of cancer cells by clinically approved hexyl ester of 5-aminolevulinic acid (ALA-Hex) induces accumulation of fluorescent porphyrins in tumors. This allows fluorescence photodiagnosis (PD) of bladder cancer by blue light illumination. However, PD of other cancers is hampered by acute toxicity of the compound limiting its use to local applications. We have designed and synthesized a new prodrug of ALA-Hex that tackles the stability-activity paradox of amino-modified 5-ALA prodrugs. The glucuronide prodrug Glu-ALA-Hex demonstrates excellent stability under physiological conditions and activation in the presence of the target enzyme. β-glucuronidase-triggered release of 5-ALA is programmed to yield fluorescence in tumor environment with elevated β-glucuronidase activity, a characteristic of many solid tumors. Glu-ALA-Hex produces similar levels of fluorescence as ALA-Hex in breast cancer MCF7 cells in vitro but with much lower non-specific cell toxicity.  相似文献   

10.
Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes which are expressed in several epithelia and overexpressed in some carcinomas. They have recently been linked to von Hippel-Lindau gene-mediated carcinogenesis in that both isoenzymes are downregulated by the product of the wild-type von Hippel-Lindau tumour suppressor gene. This paper describes the localisation of CA IX and XII in the normal human pancreas and pancreatic tumours. Both isoenzymes showed positive reaction in the basolateral plasma membrane of the normal acinar and ductal epithelia. The hyperplastic ductal epithelium in tumour specimens generally showed an increased staining for CA IX. Of 29 malignant tumours of exocrine pancreas, 10 showed moderate or strong immunoreaction for CA IX. The signal for CA XII remained weak in most malignant lesions. The present results show that both CA IX and XII are unevenly expressed in the ductal and acinar compartments of the human pancreas. The expression of these isoenzymes in a relatively low number of malignant tumour specimens suggests that they have a limited value in diagnostic evaluation of pancreatic carcinoma. However, the increased expression of CA IX in hyperplastic ductal epithelium may contribute to the pancreatic tumourigenesis.  相似文献   

11.
Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.  相似文献   

12.
4-Amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide was condensed with cyclic-1,3-diketones (dimedone and cyclohexane-1,3-dione) and aromatic aldehydes under microwave irradiation, leading to a series of acridine–acetazolamide conjugates. The new compounds were investigated as inhibitors of carbonic anhydrases (CA, EC 4.2.1.1), and more precisely cytosolic isoforms hCA I, II, VII and membrane-bound one hCA IV. All investigated isoforms were inhibited in low micromolar and nanomolar range by the new compounds. hCA IV and VII were inhibited with KIs in the range of 29.7–708.8 nM (hCA IV), and of 1.3–90.7 nM (hCA VII). For hCA I and II the KIs were in the range of 6.7–335.2 nM (hCA I) and of 0.5–55.4 nM (hCA II). The structure–activity relationships (SAR) for the inhibition of these isoforms with the acridine–acetazolamide conjugates reported here were delineated.  相似文献   

13.
With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer’s disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer’s disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67–169.80 nM (donepezil IC50 50.12 nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50 μM (sildenafil IC50 12.59 μM), and some of these compounds showed low cell toxicity to A549 cells in vitro.  相似文献   

14.
Lysine-specific demethylase 1 (LSD1) is an attractive molecular target for cancer therapy. We have previously reported potent LSD1-selective inhibitors (i.e., NCD18, NCD38, and their analogs) consisting of trans-2-phenylcyclopropylamine (PCPA) or trans-2-arylcyclopropylamine (ACPA) and a lysine moiety that could form a γ-turn structure in the active site of LSD1. Herein we report the design, synthesis and evaluation of γ-turn mimetic compounds for further improvement of LSD1 inhibitory activity and anticancer activity. Among a series of γ-turn mimetic compounds synthesized by a Mitsunobu-reaction-based amination strategy, we identified 1n as a potent and selective LSD1 inhibitor. Compound 1n induced cell cycle arrest and apoptosis through histone methylation in human lung cancer cells. The γ-turn mimetics approach should offer new insights into drug design for LSD1-selective inhibitors.  相似文献   

15.
A series of metronidazole–thiazole derivatives has been designed, synthesized and evaluated as potential antibacterial inhibitors. All the synthesized compounds were determined by elemental analysis, 1H NMR and MS. They were also tested for antibacterial activity against Escherichia coli, Bacillus thuringiensis, Bacillus subtilis and Pseudomonas aeruginosa as well as for the inhibition to FabH. The results showed that compound 5e exhibited the most potent inhibitory activity against E. coli FabH with IC50 of 4.9 μM. Molecular modeling simulation studies were performed in order to predict the biological activity of proposed compounds. Toxicity assay of compounds 5a, 5b, 5d, 5e, 5g and 5i showed that they were noncytotoxic against human macrophage. The results revealed that these compounds offered remarkable viability.  相似文献   

16.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

17.
A novel series of formoterol–phthalazinone hybrids were synthesised and evaluated as dual pharmacology β2-adrenoceptor agonists and PDE4 inhibitors. Most of the hybrids displayed high β2-adrenoceptor agonist and moderate PDE4 inhibitory activities. The most potent compound, (R,R)-11c, exhibited agonist (EC50 = 1.05 nM, pEC50 = 9.0) and potent PDE4B2 inhibitory activities (IC50 = 0.092 μM).  相似文献   

18.
Chapman CM  Gibson GR  Rowland I 《Anaerobe》2012,18(4):405-413
Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p < 0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain.  相似文献   

19.
Abstract

A series of amino acid–sulphonamide conjugates was prepared through benzotriazole mediated coupling reactions and characterised by 1H-NMR, 13C-NMR, MS, and FTIR spectroscopic techniques as well as elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against four human (h) isoforms, hCA I, hCA II, hCA VA, and hCA XII. Most of the synthesised compounds showed effective in vitro CA inhibitory properties. The new amino acid–sulphonamide conjugates showed potent inhibitory activity against hCA II, some of them at subnanomolar levels, exhibiting more effective inhibitory activity compared to the standard drug acetazolamide. Some of these sulphonamides were also found to be effective inhibitors of hCA I, hCA VA, and hCA XII, with activity from the low to high nanomolar range.  相似文献   

20.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号