首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

2.
Using matrine (1) as the lead compound, a series of new 14-(N-substituted-2-pyrrolemethylene) matrine and 14-(N-substituted-indolemethylene) matrine derivatives was designed and synthesized for their potential application as anticancer agents. The structure of these compounds was characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (SMMC-7721, A549 and CNE2). The results revealed that compound A6 and B21 displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05?μM, which showed better activity than the parent compound (Matrine) and positive control Cisplatin. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound A6 and B21 could significantly induce the apoptosis of SMMC-7721 and CNE2 cells in a dose-dependent manner. The cell cycle analysis also revealed that compound A6 could cause cell cycle arrest of SMMC-7721 and CNE2 cells at G2/M phase.  相似文献   

3.
An efficient, one-pot multicomponent reaction of novel pyrazolo-oxothiazolidine derivatives was achieved by condensation of 1-(benzofuran-2-yl)-3-(substituted-arylprop-2-en-1-ones, thiosemicarbazide and dialkyl acetylenedicarboxylates under the optimized reaction conditions. Synthesised compounds were evaluated for their antiproliferative activity against A549 human lung cancer cell line. Among all the tested compounds, 4a (IC50 – 0.930?μg/mL), 4e (IC50 – 1.207?μg/mL), 4f (IC50 – 0.808?μg/mL), 4g (IC50 – 1.078?μg/mL), 4h (IC50 – 0.967?μg/mL) and 4j (IC50 – 2.445?μg/mL) showed promising activity compared with standard drug Sorafenib (IC50 – 3.779?μg/mL). Molecular docking studies indicated that compound 4f had the greatest affinity for catalytic site of receptors EGFR (PDB ID code: 1?M17) and VEGFR2 (PDB ID code: 4AGD, 4ASD). These novel pyrazolo-oxothiazolidine derivatives can be promising therapeutic agents for A549 human lung cancer cell line.  相似文献   

4.
A series of long-chain derivatives of chrysin (compounds 322) were synthesized to evaluate for their antiproliferative activities against the human liver cancer cell line HT-29 and EGFR inhibitory activity. Among the compounds tested, compounds hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetate (10) and N-hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetamide (20) displayed potent EGFR inhibitory activity with IC50 values of 0.048 μM and 0.035 μM), comparable to the positive control erlotinib. Docking simulation of compounds 10 and 20 was carried out to illustrate the binding mode of the molecular into the EGFR active site, and the result suggested that compound 10 and 20 can bind the EGFR kinase well. Thus, compounds 10 and 20 with potent EGFR inhibitory activity would be potential anticancer agents.  相似文献   

5.
In a systematic effort to identify a potent anticancer agent, we synthesized benzothiazole thiourea derivatives and examined their cytotoxic activity against five different human and animal cancer cell lines. Benzothiazolylthiocarbamides have been prepared in excellent yields by reaction of substituted 2-amino benzothiazoles with carbon disulfide and dimethyl sulfate followed by their ammonolysis. Cytotoxicity of the four compounds were screened for antitumor activity against human breast cancer cells (MCF-7), human cervix epithelial carcinoma (HeLa), human colon cancer cell line (HT-29), human leukemia cell line (K-562), and mouse neuroblastoma cell line (Neuro-2a) using cisplatin as a reference by MTT assay. Our results presented herein provide experimental evidence that benzothiazolylthiocarbamides induce apoptosis in cancer cell lines. According to flow cytometry results, treatment of HT-29 cells with 1-(6-ethoxy-1,3-benzothiazol- 2-yl)thiourea produced a large population of apoptotic cell (79.45%), which was 1.2-fold higher than that produced by cisplatin (65.28%) at the same concentration.  相似文献   

6.
A series of novel water-soluble N-mustard-benzene conjugates bearing a urea linker were synthesized. The benzene moiety contains various hydrophilic side chains are linked to the meta- or para-position of the urea linker via a carboxamide or an ether linkage. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and therapeutic efficacy against human tumor xenografts in vivo. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft and significant suppression against prostate adenocarcinoma PC3 xenograft were achieved by treating with compound 9aa′ at the maximum tolerable dose with relatively low toxicity. We also demonstrate that the newly synthesized compounds are able to induce DNA cross-linking through alkaline agarose gel shift assay. A pharmacokinetic profile of the representative 9aa′ in rats was also investigated. The current studies suggest that this agent is a promising candidate for preclinical studies.  相似文献   

7.
The present study was carried out in the attempt to synthesize a new class of potential anticancer agents comprising eleven compounds (2434) sharing the 3,5-diarylisoxazole as a core. The chemical structure of the new synthesized compounds was established by IR, 1H NMR, 13C NMR and elemental analysis. Their biological potential towards prostate cancer was evaluated by using cancer PC3 cells and non-tumorigenic PNT1a cells. Interestingly, compound 26 distinguished from others with a quite high selectivity value that is comparable to 5-FU. The binding mode of 26 towards Ribosomal protein S6 kinase beta-1 (S6K1) was investigated at a molecular level of detail by employing docking simulations based on GLIDE standard precision as well as MM-GBSA calculations.  相似文献   

8.
Twenty-two quinazoline derivatives have been synthesised and examined for their anti-tumour activity against three tumour cell lines, namely human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human hepatoma cell line (HepG2). Twelve of the tested compounds have shown promising anti-tumour activity with an IC50 range of 5.0–9.7 µg/mL. Regarding the spectrum of activity, five compounds exhibited interesting anti-proliferative properties against the three tested cell lines comparable to the reference drug (dasatinib).  相似文献   

9.
Twenty-two quinazoline derivatives have been synthesised and examined for their anti-tumour activity against three tumour cell lines, namely human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human hepatoma cell line (HepG2). Twelve of the tested compounds have shown promising anti-tumour activity with an IC(50) range of 5.0-9.7 μg/mL. Regarding the spectrum of activity, five compounds exhibited interesting anti-proliferative properties against the three tested cell lines comparable to the reference drug (dasatinib).  相似文献   

10.
A series of novel 1,3,4-trisubstituted pyrazole derivatives were synthesized and evaluated for their cytotoxic activity against three different cancer cell lines namely HCT116, UO-31 and HepG2. Compounds 3b, 3d, 7b and 9 showed excellent anticancer activity against all the tested cancer cell lines and had better cytotoxic activities than the reference drug, Sorafenib. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Among them, 3b and 7b were the most active compounds against HCC cells used here. Further studies on the mechanism demonstrated that 3b and 7b induced apoptosis in addition to induction of cell cycle arrest at G2/M phase in HepG2 and Huh7 cells. Consistent with these results, caspase-3 assay was done and the results revealed that the pro-apoptotic activity of the target compounds could be due to the stimulation of caspases-3. In addition, CDK1 inhibition assay was done and it was found that compounds 3b and 7b inhibited CDK1 activities with IC50 values of 2.38 and 1.52 µM, respectively. Finally, pyrazole derivatives 3b and 7b showed potent bioactivities, indicating that these compounds could be potent anticancer drugs in the future.  相似文献   

11.
12.
The novel hydroxyanthraquinone derivatives containing nitrogen-mustard and thiophene group were designed to covalently bind to topoisomerase II, and their structures were confirmed by nuclear magnetic resonance and high resolution mass spectrometer technologies in this article. The in vitro cytotoxicity against different cancer cell lines and one normal liver cell line (L02) was evaluated by MTT assay. Compound A1 was the most potent anti-proliferative agent against the human liver cancer HepG-2 cells (IC50?=?12.5?μM), and there is no obvious growth inhibitory effect on normal liver tissue L02 cells. The good cytotoxicity and selectivity of compound A1 suggest that it could be a promising lead for further optimization. The mechanisms of action about compound A1 and A4 were further investigated through analysis of cell apoptosis. Confocal microscopy tracks the location of compound A1 in the cell, which could enter the cytoplasm and nucleus, and induce severe deformation of the nucleus. The docking study demonstrated that A1 could interact with the catalytic active site in topoisomerase II.  相似文献   

13.
Two series of 4,6-diaryl-2-imino-1,2-dihydropyridine-3-carbonitriles and their isosteric 4,6-diaryl-2-oxo-1,2-dihydropyridine-3-carbonitriles were synthesized through a combinatorial approach. The prepared analogues were evaluated for their in vitro capacity to inhibit PDE3A and the growth of the human HT-29 colon adenocarcinoma tumor cell line. Compound 6-(4-bromophenyl)-4-(2-ethoxyphenyl)-2-imino-1,2-dihydropyridine-3-carbonitrile (Id) exhibited the strongest PDE3 inhibition when cGMP but not cAMP is the substrate with a IC50of 27 μM, which indicates a highly selective mechanism of enzyme inhibition. On the other hand, compound 6-(1,3-benzodioxol-5-yl)-4-(2-ethoxyphenyl)-2-imino-1,2-dihydropyridine-3-carbonitrile (Ii) was the most active in inhibiting colon tumor cell growth with a IC50 of 3 μM. The electronic effects, steric effects and conformational aspects of Id seem to be the most crucial for the PDE3 inhibition. Meanwhile, steric factors and the H-bonding capability seem to be the most important factors for tumor cell growth inhibitory activity. Conversely, there is no direct correlation between PDE3 inhibition and anticancer activity for the prepared compounds. An in silico docking experiment indicates the potential involvement of other potential molecular targets such as PIM-1 kinase to explain its tumor cell growth inhibitory activity.  相似文献   

14.
A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53. The results highlighted the importance of the introduction of the flexible spacer as well as the higher activity of oxa-Michael isoxazole-derivatives. The most prominent compounds also showed anti-proliferative activities against lung and colon cancer cell lines. The compounds showed enhanced cytotoxic effects in the presence of mutant p53, determined both by endogenous mutant p53 knock down (R280K) and by reintroducing p53 R280K in cells lacking p53 expression.  相似文献   

15.
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50?=?1.05?µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50?=?6.84?µM) and 5-fluorouracil (5-FU) (IC50?=?24.80?µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.  相似文献   

16.
Novel tolmetin derivatives 5a–f to 8a–c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.  相似文献   

17.
Two series of urea and thiourea derivatives (1a-11a, 1b-11b) have been synthesized; all the 22 compounds were reported for the first time. Their anti-proliferative activities against the melanoma cell line B16-F10 were evaluated. Among the compounds tested, compound 6b exhibited the most potent activity in melanoma cells growth inhibition (IC(50) = 0.33 μM). The bioassay tests showed that anti-proliferative activities of these novel compounds were possibly caused by inhibition of ERK1/2 phosphorylation level. Therefore, compound 6b can be a potential anti-melanoma agent and an inhibitor of ERK1/2 phosphorylation deserving further research.  相似文献   

18.
A novel class of sulfonylurea and thiourea derivatives substituted with benzenesulfonamide groups were designed and synthesized. The target compounds were assayed for the effects on the insulin release of isolated rat pancreatic islets and the glucose transport in adipocytes of rats. Some of them exhibited high potency. Compound 10 also had potent antiplatelet activity and showed an excellent property to protect collagen–epinephrine-induced mice mortality as well as plasma glucose-lowering activity in vivo. The preliminary pharmacological profile of compound 10 showed that it might be useful in the treatment of diabetics with cardiovascular and nephropathy complications.  相似文献   

19.
A series of 4-dimethylamine flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential multi-functional anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity at the micromolar range (IC50, 1.83–33.20 μM for AChE and 0.82–11.45 μM for BChE). A Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5j with AChE, and molecular modeling study showed that 5j targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, the derivatives showed potent self-induced Aβ aggregation inhibitory activity at 20 μM with percentage from 25% to 48%. In addition, some compounds (5j5q) showed potent oxygen radical absorbance capacity (ORAC) ranging from 1.5- to 2.6-fold of the Trolox value. These compounds should be further investigated as multi-potent agents for the treatment of Alzheimer’s disease.  相似文献   

20.
The enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure–activity relationships. Among the compounds tested, compounds 9h and 9j exhibited the highest activity with IC50 1.28 µM and 1.13 µM, respectively. Docking studies to explore the binding mode of the compounds identified key moieties that may contribute to the observed activities. The active compounds will serve as suitable leads for further chemical optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号