首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition mechanism of electrophilic peptide-based protease inhibitors of full-length hepatitis C virus (HCV) NS3 has been investigated by determining the K(i)-values for a series of compounds differing in the electrophilicity and acidity of the C-terminal residue at pH-values above and below the pK(a) of the catalytic histidine (6.85) and at two different ionic strengths. Electrophilic compounds with a pentafluoroethyl ketone group showed stronger inhibition at pH 8 than pH 6, as expected for a mechanism requiring an unprotonated catalytic histidine. However, the difference was only significant at high ionic strength. In contrast, electrophilic compounds with an acidic C-terminal group or a cyclic P1 residue showed a lower inhibitory effect at pH 8 than at pH 6, inconsistent with a mechanism-based inhibition. Moreover, all electrophilic compounds had an unexpectedly strong inhibition at pH 6, when mechanism-based inhibition is unlikely. The results suggest that for some of the electrophilic compounds the reactive group may not be properly positioned in the active site and that binding of these inhibitors is a result of non-covalent interactions. The nature of these interactions is discussed.  相似文献   

2.
Han L  Hiratake J  Kamiyama A  Sakata K 《Biochemistry》2007,46(5):1432-1447
Gamma-glutamyl transpeptidase (GGT, EC 2.3.2.2) catalyzes the transfer of the gamma-glutamyl group of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and plays a central role in glutathione metabolism. GGT is involved in a number of biological events, such as drug resistance and metastasis of cancer cells by detoxification of xenobiotics and reactive oxygen species through glutathione metabolism, and is also implicated in physiological disorders, such as Parkinson's disease, neurodegerative disease, diabetes, and cardiovascular diseases. In this study, we designed, synthesized, and evaluated a series of gamma-phosphono diester analogues of glutamate as transition-state mimic inhibitors of GGT. The electrophilic phosphonate diesters served as highly potent mechanism-based inhibitors that caused the time-dependent and irreversible inhibition of both the E. coli and human enzymes, probably by phosphonylating the catalytic Thr residue of the enzyme. In particular, one of the inhibitors exhibited more than 6000 times higher activity toward human GGT than acivicin, a classical but nonselective inhibitor of GGT. The dependence of the inactivation rate on the leaving group ability of the phosphonates (Br?nsted plot) revealed that the phosphonylation of the catalytic Thr residue proceeded via a dissociative transition-state with substantial bond cleavage between the phosphorus and the leaving group for both E. coli and human GGTs. The binding site of GGT for the Cys-Gly moiety of glutathione or for the acceptor molecules was probed by the phosphonate diesters to reveal a significant difference in the mechanism of substrate recognition between E. coli and human GGT. Thus, in the human enzyme, a specific residue in the Cys-Gly binding site played a critical role in recognizing the Cys-Gly moiety or the acceptor molecules by interacting with the C-terminal carboxy group, whereas the Cys side chain and the Cys-Gly amide bond were not recognized significantly. In contrast, the E. coli enzyme was a nonselective enzyme that accommodated substrates without specifically recognizing the C-terminal carboxy group of the Cys-Gly moiety of gamma-glutamyl compounds or the acceptor molecules. The phosphonate diester-based GGT inhibitors shown here should serve as a blue print for the future design of highly selective GGT inhibitors for use as drug leads and biological probes that gain insight into the hitherto undefined physiological roles of GGT and the relationships between GGT and a variety of diseases.  相似文献   

3.
The mechanism of proteolysis by serine proteases is a reasonably well-understood process. Typically, a histidine residue acting as a general base deprotonates the catalytic serine residue and the hydrolytic water molecule. We disclose here, the use of an unnatural d-amino acid as a strategic residue in P1 position, designed de novo based on the architecture of the protease catalytic site to impede the catalytic histidine residue at the stage of acyl-enzyme intermediate. Several probe molecules containing d-homoserine or its derivatives at P1 position are evaluated. Compounds 1, 6, and 8-10 produced up to 57% loss of activity against chymotrypsin. More potent and specific inhibitors could be designed with structure optimization as this strategy is completely general and can be used to design inhibitors against any serine or cysteine protease.  相似文献   

4.
Virtual screening of an in-house virtual library of synthetic compounds using FlexX, followed by enzyme inhibition, identified hydrazide and hydrazine derivatives as novel aspartic protease inhibitors. These compounds inhibited human cathepsin D and Plasmodium falciparum plasmepsin-II with low micromolar concentrations (IC50?=?1-2.5 μM). Modelling studies with plasmepsin-II predicted binding of ligands at the centre of the extended substrate-binding cleft, where hydrazide/hydrazine parts of the inhibitors acted as the transition state mimic by forming electrostatic interactions with catalytic aspartates.  相似文献   

5.
Ionic Conductance Changes in Voltage Clamped Crayfish Axons at Low pH   总被引:20,自引:10,他引:10       下载免费PDF全文
Giant axons from the crayfish have been voltage clamped with an axial wire system. General characterististics of observed ionic currents under normal conditions are similar to those measured in other giant axons and in nodes of Ranvier. As the pH of the external bath is lowered below 7, a marked, reversible slowing of potassium currents is seen with little effect on sodium currents. The steady-state potassium conductance-voltage curve is shifted along the voltage axis in a manner consistent with the development of a hyperpolarizing surface charge. Results suggest that this potential shift accounts for part, though not all, of the observed increase in τn. From the behavior of the kinetics of the delayed current with external pH these alterations in potassium conductance are attributed to the titration of a histidine imidazole residue of a membrane protein. Chemical modification of histidine by carbethoxylation at pH 6 slows and strongly depresses potassium currents. The results suggest that in addition to the introduction of electrostatic forces, possibly resulting from a hyperpolarizing surface charge, protonation of a histidine group at low pH also alters the nonelectrostatic chemical interactions determining the ease with which potassium gates open and close. The evidence indicates that the modified histidine residue is closely associated with the membrane components involved in the control of potassium conductance.  相似文献   

6.
Resonances of the histidine region of human carbonic anhydrase B have been studied by proton magnetic resonance spectroscopy in the presence of seven sulfonamide inhibitors. Results of difference spectroscopy and observation of the C-2 resonance of an additional titratable histidine in some of these spectra suggest a conformational change in the enzyme, while the large number of unaltered resonances indicates involvement of only a few residues. Inhibition of carbonic anhydrase by sulfonamides appears to involve: stabilization of an appropriately oriented initial complex by hydrophobic binding of the aromatic ring of the inhibitor to residues of the cavity forming the active site; ionization of the sulfonamido group, facilitated by its proximity to zinc; protonation and displacement of the high pH ligand to the metal controlling catalytic activity, thought here to be a histidine residue; and formation by the sulfonamido group of an ionic bond to zinc and a hydrogen bond to the hydroxyl group of serine or threonine. Diversity of spectra produced with various sulfonamides suggests that substituents on the ring and heteroatoms within the ring interact with additional groups at the active site. Increase in inhibitory potency appears to involve optimizing the number as well as the strength of these interactions. An upper limit for the dissociation rate of these complexes of 10 sec-1 was obtained.  相似文献   

7.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J M Pesando 《Biochemistry》1975,14(4):681-688
The seven resonances observed in the histidine region of the proton magnetic resonance (pmr) spectrum of human carbonic anhydrase B and reported in the preceding paper are studied in the presence of sulfonamide, azide, cyanide, and chloride inhibitors and in metal-free, cadmium substituted, cobalt substituted, and carboxymethylated forms of the enzyme. Results indicate that the two resonances that move-downfield with increasing pH and the two that do not move with pH reflect residues located at the active site. The first two resonances are assigned to the same titratable histidine whose pK value of 8.24 corresponds to that of the group controlling catalytic activity. Addition of anions or sulfonamides, removal of zinc, or substitution of cadmium for zinc at the active site, procedures known to abolish enzymatic activity, prevent titration of this residue. Partial inhibition of carbonic anhydrase by chloride slectively increases the pK value of the group controlling catalytic activity and of the histidine with pK equals 8.24. Experiments with metal-free and cadmium carbonic anhydrases and comparisons with model systems suggest that this histidine is bound to the metal ion at high pH; at low pH this complex appears to dissociate as protons compete with the metal for the imidazole group. It is proposed that ionization of the group controlling catalytic activity represents loss of the pyrrole proton of this neutral ligand when it binds to Zn(II), forming an imidazolate anion and juxtaposing a strong base and a powerful Lewis acid at the active site. When bound to zinc as an anion, this histidine can act as a general base catalyst in the hydration of carbon dioxide and be replaced as a metal ligand by an oxygen of the substrate in the course of the reaction. The histidine-metal complex is thought to exist in a strained configuration in the active enzyme so that its imidazole-metal bond is readily broken on addition of substrates or inhibitors. This model is consistent with the available data on the enzyme and is discussed in relation to alternative proposals.  相似文献   

9.
The systematic screening of over 150 compounds for inhibitory activity on mammalian cytosolic epoxide hydrolase led to identification of chalcone oxide (trans-1-benzoyl-2-phenyloxirane) as an optimal inhibitory structure. Important structural features for inhibition include two hydrophobic moieties preferably orientating in a trans manner from an electrophilic center such as an activated olefin or epoxide, with the epoxide giving maximal activity. Synthesis of chalcone oxide derivatives bearing a single p-substituent on either phenyl ring has led to very potent inhibitors of the enzyme, the best being 4-phenylchalcone oxide (50% inhibition at 6.4 × 10?8m). Multiple factorial analysis on the inhibition data for the two series of chalcone oxides prepared (phenyl or benzoyl substituted) revealed both the essentialness of hydrophobic interactions and the apparent nonequivalence of the two hydrophobic sites involved in the inhibitory process. Steric factors were considerably less crucial while electronic effects were unimportant in the compounds examined. The chalcone oxides were either inactive or only weak inhibitors of the other major epoxide-metabolizing enzymes in mouse liver, cytosolic glutathione S-transferase, and microsomal epoxide hydrolase. The nature of the inhibition of cytosolic epoxide hydrolase by chalcone oxides was further investigated through steady-state kinetic analysis and the use of amino acid modifiers. Chalcone oxides give a slowly reversible mixed-noncompetitive inhibition. They may interact covalently with a cysteine residue possibly essential to the catalytic action of cytosolic epoxide hydrolase, and may indeed be alternative substrates with very low turnover. The cytosolic and microsomal epoxide hydrolases can be clearly distinguished by these inhibitors, further indicating different catalytic mechanisms.  相似文献   

10.
A series of N-acylphenylalanylglycine dipeptides were synthesized and examined as substrates for neutral endopeptidase 24.11 (NEP) and thermolysin. Those N-acyl dipeptides containing an N-acyl group derived from an acid whose pKa is below 3.5 were considerably more reactive with both enzymes than those peptides containing an N-acyl group derived from an acid whose pKa is above 4. The data are interpreted to suggest that electron withdrawal at the scissile bond increases kappa cat for both NEP and thermolysin. The pH dependence for inhibition by the dipeptides Phe-Ala, Phe-Gly, and Leu-Ala showed binding dependent upon the basic form of an enzyme residue with a pKa of 7 for NEP and a pKa of 6 for thermolysin. In the case of thermolysin this pKa was decreased to 5.3 in the enzyme-inhibitor complex. When examined as alternate substrate inhibitors of NEP, N-acyl dipeptides showed three distinct profiles for the dependence of Ki on pH. With N-trifluoroacetyl-Phe-Gly as inhibitor, binding is dependent upon the basic form of an enzyme residue with a pKa value of 6.2. N-methoxyacetyl-Phe-Gly inhibition appears pH independent, while N-acetyl-Phe-Gly inhibition is dependent upon the acidic form of an enzyme residue with a pKa of approximately 7. All inhibitions of thermolysin by N-acyl dipeptides exhibit a dependence on the acidic form of an enzyme residue with a pKa of 5.3 to 5.8. These results suggest that with NEP, binding interactions at the active site involve one or more histidine residues while with thermolysin binding involves an active site glutamic acid residue.  相似文献   

11.
J Rahil  R F Pratt 《Biochemistry》1992,31(25):5869-5878
The class C serine beta-lactamase of Enterobacter cloacae P99 was inhibited by a series of aryl methylphosphonate monoester monoanions. The effectiveness of these inhibitors was promoted by an acylamido substituent on the methyl group and a good leaving group at phosphorus. The former preference suggests that noncovalent interaction of these inhibitors with the enzyme resembles that of substrates, while the latter suggests that nucleophilic displacement at phosphorus occurs as part of the inhibition mechanism. The truth of the latter proposition was confirmed by observation of release of 1 equiv of phenol concomitant with inhibition and of the presence of an equivalent amount of 14C-label on the enzyme after inhibition by a 14C-labeled phosphonate. The hydrolytically inert nature of the enzyme-inhibitor adduct, and its 31P chemical shift, suggested that O-phosphonylation of the enzyme had occurred. Although, by analogy with substrates, one might expect that the hydroxyl of the active site serine residue would be covalently modified by these inhibitors, successive alkali and acid treatment of the enzyme-inhibitor adduct generated no pyruvate. Instead, 1 equiv of lysinoalanine was found. This product was rationalized to arise through intramolecular capture by an adjacent lysine amine group of the dehydroalanine residue produced by alkali treatment of an O-phosphonylated serine residue. One equivalent of lysinoalanine was also produced by alkali treatment of the enzyme that had been inhibited by 6 beta-bromopenicillanic acid, a mechanism-based inhibitor known to acylate the hydroxyl group of the active site serine residue. It is therefore likely that the aryl phosphonates phosphonylate this residue. These compounds should be useful as beta-lactamase active site titrants and as sources of fresh insight into the chemical properties of the active site. The significant mechanistic features of the inhibition, in particular its strong leaving group dependence and the distinctive ability of the beta-lactamase active site to stabilize a dianionic transition state containing a pentacoordinated phosphorus, are discussed with respect to the active site structure. The comparison with phosph(or/on)yl inhibitors of serine proteinases is made, and the mechanism-based features of inhibition of serine hydrolases by phosph(on)ates are noted.  相似文献   

12.
Ion channels are often modulated by changes in extracellular pH, with most examples resulting from shifts in the ionization state of histidine residue(s) in the channel pore. The application of acidic extracellular solution inhibited expressed KCa2.2 (SK2) and KCa2.3 (SK3) channel currents, with KCa2.3 (pIC50 of ∼6.8) being approximately fourfold more sensitive than KCa2.2 (pIC50 of ∼6.2). Inhibition was found to be voltage dependent, resulting from a shift in the affinity for the rectifying intracellular divalent cation(s) at the inner mouth of the selectivity filter. The inhibition by extracellular protons resulted from a reduction in the single-channel conductance, without significant changes in open-state kinetics or open probability. KCa2.2 and KCa2.3 subunits both possess a histidine residue in their outer pore region between the transmembrane S5 segment and the pore helix, with KCa2.3 also exhibiting an additional histidine residue between the selectivity filter and S6. Mutagenesis revealed that the outer pore histidine common to both channels was critical for inhibition. The greater sensitivity of KCa2.3 currents to protons arose from the additional histidine residue in the pore, which was more proximal to the conduction pathway and in the electrostatic vicinity of the ion conduction pathway. The decrease of channel conductance by extracellular protons was mimicked by mutation of the outer pore histidine in KCa2.2 to an asparagine residue. These data suggest that local interactions involving the outer turret histidine residues are crucial to enable high conductance openings, with protonation inhibiting current by changing pore shape.  相似文献   

13.
A preliminary investigation of the kinetic properties of 3-carboxy-cis,cis-muconate cyclase (EC 5.5.1.5) has been performed. The initial velocity of the reaction was shown to be proportional to the concentration of the enzyme in the assay system adopted and the apparent Km was found to be 57 muM at pH 6.0 and 30 degrees C but at concentrations exceeding 70 muM, substrate inhibition was apparent. At pH 6.0 the Ki for the substrate was 0.45 mM. Plots of V and Km against pH showed inflexions at pH 5.3 and pH 6.4. The enzyme was inhibited by a variety of inorganic anions and by a number of dicarboxylic and tricarboxylic acids. The degree of inhibition exerted by these acids was found to be proportional to the proximity of their carboxyl groups, the cis configuration being a more effective inhibitor than the trans configuration. As inhibition was competitive in each case, the presence of an anion-sensitive substrate-binding site has been postulated. The cis-cis, cis-trans and trans-trans isomers of muconate, 3-chloromuconate and 3-carboxy-cis-trans-muconate, close analogues of natural substrate but not attacked by the enzyme, were also found to be competitive inhibitors. The variation in pKi with pH was determined in the case of cis,cis-muconate and cis-aconitate, both of which gave curves suggesting the importance of a group with a pKa of approximately 6.4 responsible for increasing the inhibition of the enzyme. Modification by ethoxyformic anhydride and the kinetics of Rose-Bengal-sensitized photo-oxidation suggested the participation of a histidine residue in the catalytic reaction. These results are discussed in the light of recent work on enzymes catalysing analogous reactions; a likely reaction mechanism has been proposed.  相似文献   

14.
15.
Bacterial β-lactamase enzymes are in large part responsible for the decreased ability of β-lactam antibiotics to combat infections. The inability to overcome β-lactamase mediated resistance spurred the development of inhibitors with penems and penam sulfones being amongst the most potent and broad spectrum mechanism-based inactivators. These inhibitors form covalent, “suicide-type” inhibitory intermediates that are attached to the catalytic S70 residue. To further probe the details of the mechanism of β-lactamase inhibition by these novel compounds, we determined the crystal structures of SHV-1 bound with penem 1, and penam sulfones SA1-204 and SA3-53. Comparison with each other and with previously determined crystal structures of members of these classes of inhibitors suggests that the final conformation of the covalent adduct can vary greatly amongst the complex structures. In contrast, a common theme of carbonyl conjugation as a mechanism to avoid deacylation emerges despite that the penem and penam sulfone inhibitors form different types of intermediates. The detailed insights gained from this study could be used to further improve new mechanism-based inhibitors of these common class A serine β-lactamases.  相似文献   

16.
Chalcone isomerase form soybean is inactivated by treatment with diethyl pyrocarbonate (DEP). The competitive inhibitor 4',4-dihydroxychalcone provides kinetic protection against inactivation by DEP with a binding constant at the site of protection in agreement with its binding constant at the active site. Very high concentrations of the competitive inhibitors 4',4-dihydroxychalcone or morin hydrate offer a 10- to 40-fold maximal protection, suggesting a second slower mechanism for inactivation which cannot be prevented by blockage of the active site. Blockage of the only cysteine residue in chalcone isomerase with p-mercuribenzoate does not affect the rate constant for DEP-dependent inactivation and indicates that the modification of the cysteine residue is not responsible for the activity loss observed in the presence of DEP. Treatment of inactivated enzyme with hydroxylamine does not restore catalytic activity, indicating that the modification of histidine or tyrosine residues is not responsible for the activity loss. All five histidines of chalcone isomerase are modified by DEP at pH 5.7 and ionic strength 1.0 M. The rate constant for the modification of the histidine residues of chalcone isomerase is close to that for the reaction of N-acetyl histidine with DEP, indicating that the histidine residues are quite accessible to the modifying reagent. The rate of histidine modification is the same in native enzyme, in urea-denatured enzyme, and in the presence of a competitive inhibitor. In the presence of the competitive inhibitor morin hydrate, all of the histidine residues of chalcone isomerase can be modified without significant loss in catalytic activity. These results demonstrate that the histidine residues of chalcone isomerase are not essential for catalysis and therefore cannot function as nucleophilic catalysts as previously proposed.  相似文献   

17.
Proteins in the α-macroglobulin (αM) superfamily use thiol esters to form covalent conjugation products upon their proteolytic activation. αM protease inhibitors use theirs to conjugate proteases and preferentially react with primary amines (e.g. on lysine side chains), whereas those of αM complement components C3 and C4B have an increased hydroxyl reactivity that is conveyed by a conserved histidine residue and allows conjugation to cell surface glycans. Human α2-macroglobulin–like protein 1 (A2ML1) is a monomeric protease inhibitor but has the hydroxyl reactivity–conveying histidine residue. Here, we have investigated the role of hydroxyl reactivity in a protease inhibitor by comparing recombinant WT A2ML1 and the A2ML1 H1084N mutant in which this histidine is removed. Both of A2ML1s'' thiol esters were reactive toward the amine substrate glycine, but only WT A2ML1 reacted with the hydroxyl substrate glycerol, demonstrating that His-1084 increases the hydroxyl reactivity of A2ML1''s thiol ester. Although both A2ML1s conjugated and inhibited thermolysin, His-1084 was required for the conjugation and inhibition of acetylated thermolysin, which lacks primary amines. Using MS, we identified an ester bond formed between a thermolysin serine residue and the A2ML1 thiol ester. These results demonstrate that a histidine-enhanced hydroxyl reactivity can contribute to protease inhibition by an αM protein. His-1084 did not improve A2ML1''s protease inhibition at pH 5, indicating that A2ML1''s hydroxyl reactivity is not an adaption to its acidic epidermal environment.  相似文献   

18.
Zhang Y  Shang X  Deng A  Chai X  Lai S  Zhang G  Wen T 《Biochimie》2012,94(3):829-838
ATP phosphoribosyltransferase (ATP-PRT) catalyzes the condensation of ATP and PRPP at the first step of histidine biosynthesis and is regulated by a feedback inhibition from product histidine. Here, we report the genetic and biochemical characterization of such an enzyme, HisGCg, from Corynebacterium glutamicum, including site-directed mutagenesis of the histidine-binding site for the first time. Gene disruption and complementation experiments showed that HisGCg is essential for histidine biosynthesis. HisGCg activity was noncompetitively inhibited by histidine and the α-amino group of histidine were found to play an important role for its binding to HisGCg. Homology-based modeling predicted that four residues (N215, L231, T235 and A270) in the C-terminal domain of HisGCg may affect the histidine inhibition. Mutating these residues in HisGCg did not cause significant change in the specific activities of the enzyme but resulted in the generation of mutant ones resistant to histidine inhibition. Our data identified that the mutant N215K/L231F/T235A resists to histidine inhibition the most with 37-fold increase in Ki value. As expected, overexpressing a hisGCg gene containing N215K/L231F/T235A mutations in vivo promoted histidine accumulation to a final concentration of 0.15 ± 0.01 mM. Our results demonstrated that the polarity change of electrostatic potential of mutant protein surface prevents histidine from binding to the C-terminal domain of HisGCg, resulting in the release of allosteric inhibition. Considering that these residues were highly conserved in ATP-PRTs from different genera of Gram-positive bacteria the mechanism by histidine inhibition as exhibited in Corynebacterium glutamicum probably represents a ubiquitously inhibitory mechanism of ATP-PRTs by histidine.  相似文献   

19.
A phospholipid-controlled interaction between the N-terminal and C-terminal domains of vinculin is thought to be a major mechanism that regulates binding activities of the protein. To probe the mechanisms underlying these interactions we used chemical modification and site-directed mutagenesis directed at histidine residues. Diethylpyrocarbonate (DEPC) modification of the C-terminal, but not the N-terminal, domain greatly decreased affinity of the N-terminal-C-terminal binding, implicating histidine residues in the C-terminal. Mutation of either or both C-terminal histidines (at positions 906 and 1026), however, did not affect N-C binding at neutral pH. The H906A mutation did prevent DEPC effects and also prevented the normal decrease in binding affinity for the N-terminal at lower pH. We found that the wild type C-terminal domain, but not the H906A mutant, underwent a conformational change at pH 6.5, reflected in an altered circular dichroism spectrum and apparent oligomerization. Phospholipid also induced conformational changes in the wild type C-terminal domain but not in the H906A mutant, even though the mutant protein did bind to the phospholipid. Finally, the sensitivity of the N-C interaction to phospholipid was much reduced by the H906A mutation. These results show that H906 plays a key role in the conformational dynamics of the C-terminal domain and thus the regulation of vinculin.  相似文献   

20.
A number of N-substituted-propargylamines are well known mechanism-based MAO inhibitors. Clorgyline and deprenyl in fact represent archetypal MAO-A and MAO-B inhibitors respectively. In the present study several ring-substituted deprenyl structural analogues were synthesized and alterations of selectivity and potency towards MAO-A and MAO-B activities were found. When deprenyl and its structural analogues were further modified to their corresponding quaternary ammonium salts, i.e. by attaching either an extra propargyl or a methyl group to the nitrogen atom, the potency of inhibition of MAO-B activity was drastically reduced and inhibition of MAO-A activity substantially increased. Such a complete inversion of selectivity may be related to a hydrophilic and electrophilic region seemingly present only in the MAO-A but not in the MAO-B molecule. The results also suggest that at least three sites are required for the selectivity and mechanism-based action of an inhibitor towards MAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号