首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Genetic analyses have indicated that brown stem rot (BSR) resistance in soybean is conferred by dominant alleles at three independent loci, the actions of which may be modified by linked or independent loci. A study was conducted to characterize the inheritance of BSR resistance in PI 567609, a soybean plant introduction from China. Segregating progeny from crosses of PI 567609 with BSR-susceptible and -resistant genotypes were evaluated for response to BSR-causal fungus, Phialophora gregata. Genetic analyses indicated that PI 567609 carries a single gene or cluster of linked genes for brown stem rot resistance, and that this gene (or cluster) is allelic to, or tightly linked to previously identified resistance genes, Rbs1, Rbs2, and Rbs3. Because previous allelism tests indicated that Rbs1, Rbs2, and Rbs3 were unlinked, and molecular mapping studies have indicated that Rbs1, Rbs2, and Rbs3 are linked on molecular linkage group J of soybean, a new model is proposed for BSR resistance. In this model, BSR resistance is controlled through the interaction of alleles at four independent loci, at least two of which are necessary to condition a resistance response. Functional redundancy at three of these loci allows any one of the three to interact with a fourth locus to confer resistance to BSR.  相似文献   

2.
Flow cytometry was used to characterize isolates of Phialophora gregata using the fluorescence intensity of propidium iodide-stained conidia. The isolates differed in their mean fluorescence intensity, ranging from 100.0 to 129.7 arbitrary units (AU). When the number of fluorescent events was plotted against intensity of fluorescence, a single peak was observed. Fluorescent patterns of Acremonium isolates from soybean vascular tissue were compared with those of P. gregata. Their mean fluorescence intensity ranged from 76.4 to 88.0 AU. With some of these isolates, multiple peak histograms were observed, corresponding to multiple spore sizes as well as single and double nucleated conidia. Using flow cytometry, we were able to distinguish P. gregata isolates from those of Acremonium , based on mean fluorescence intensity and/or the presence of multiple peaks. Flow cytometric analysis of propidium-iodide stained conidia of Phialophora isolates should prove to be useful for determining the relative DNA content of different isolates collected from different geographic areas.  相似文献   

3.
The composition and relative abundance of endophytic fungi in roots of field-grown transgenic T4-lysozyme producing potatoes and the parental line were assessed by classical isolation from root segments and cultivation-independent techniques to test the hypothesis that endophytic fungi are affected by T4-lysozyme. Fungi were isolated from the majority of root segments of both lines and at least 63 morphological groups were obtained with Verticillium dahliae, Cylindrocarpon destructans, Colletotrichum coccodes and Plectosporium tabacinum as the most frequently isolated species. Dominant bands in the fungal fingerprints obtained by denaturing gradient gel electrophoresis analysis of 18S rRNA gene fragments amplified from total community DNA corresponded to the electrophoretic mobility of the 18S rRNA gene fragments of the three most abundant fungal isolates, V. dahliae, C. destructans and Col. coccodes, but not to P. tabacinum. The assignment of the bands to these isolates was confirmed for V. dahliae and Col. coccodes by sequencing of clones. Verticillium dahliae was the most abundant endophytic fungus in the roots of healthy potato plants. Differences in the relative abundance of endophytic fungi colonizing the roots of T4-lysozyme producing potatoes and the parental line could be detected by both methods.  相似文献   

4.
Soybean plants can form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal (AM) fungi, but little is known about effects of co-inoculation with rhizobia and AM fungi on plant growth, or their relationships to root architecture as well as nitrogen (N) and phosphorus (P) availability. In the present study, two soybean genotypes contrasting in root architecture were grown in a field experiment to evaluate relationships among soybean root architecture, AMF colonization, and nodulation under natural conditions. Additionally, a soil pot experiment in greenhouse was conducted to investigate the effects of co-inoculation with rhizobia and AM fungi on soybean growth, and uptake of N and P. Our results indicated that there was a complementary relationship between root architecture and AMF colonization in the field. The deep root soybean genotype had greater AMF colonization at low P, but better nodulation with high P supply than the shallow root genotype. A synergistic relationship dependent on N and P status exists between rhizobia and AM fungi on soybean growth. Co-inoculation with rhizobia and AM fungi significantly increased soybean growth under low P and/or low N conditions as indicated by increased shoot dry weight, along with plant N and P content. There were no significant effects of inoculation under adequate N and P conditions. Furthermore, the effects of co-inoculation were related to root architecture. The deep root genotype, HN112, benefited more from co-inoculation than the shallow root genotype, HN89. Our results elucidate new insights into the relationship between rhizobia, AM fungi, and plant growth under limitation of multiple nutrients, and thereby provides a theoretical basis for application of co-inoculation in field-grown soybean.  相似文献   

5.
The ascomycete Pulvinula constellatio was found to form competing ectomycorrhizal relationships with plants that had been inoculated with Tuber spp. and other edible ectomycorrhizal fungi. In order to be able to distinguish P. constellatio mycorrhizae from those of the Tuber spp., we determined the morphological and bio-molecular characteristics of P. constellatio. The complete sequence of the ITS regions was determined, in order to select specific primers. The ITS region was also studied using restriction fragment length polymorphism analyses with several restriction enzymes that allowed an unambiguous identification of the species.  相似文献   

6.
Phytophthora rot, caused by Phytophthora sojae, is one of the most damaging diseases of soybean (Glycine max) worldwide. This disease can be difficult to diagnose and other Phytophthora species can infect soybean. Accurate diagnosis is important for management of Phytophthora rot. The objective of this study was to evaluate polymerase chain reaction (PCR) methods for rapid and specific detection of P. sojae and diagnosis of Phytophthora rot. PCR assays using two sets of primers (PS and PSOJ) that target the ITS region were evaluated for specificity and sensitivity to P. sojae. Genomic DNA extracted from 11 species of Phytophthora and 19 other species of fungal and oomycete pathogens were used to test the specificity of each primer set. The previously published PS primers amplified DNA from P.?sojae and from four other Phytophthora species using conventional PCR, indicating they are not specific for P. sojae. The new PSOJ primers amplified DNA only from P. sojae using conventional and real-time PCR and not from Phytophthora sansomeana, which has been found in soybean production areas, indicating that they are specific for P. sojae. The PSOJ primers were also used to detect P. sojae in diseased soybean tissue and infested soil. The PCR assays based on the PSOJ primers are specific, rapid, and sensitive tools for the detection of P. sojae.  相似文献   

7.
Specific primers and the polymerase chain reaction (PCR) are increasingly used for detection of fungi in plants. Detection depends on isolation of DNA that is free of compounds that inhibit amplification. We report on the significance of inhibition in soybean stems with a focus on studies of the vascular fungal pathogen Phialophora gregata. A simple DNA extraction procedure based on a FastDNA® kit is described that allows consistent detection of fungi in soybean stems using PCR. The addition of polyvinylpyrrolidone and supplemental DNA purification steps overcame inhibition in over 90% of samples. These methods should also facilitate studies with other plant and fungal species.  相似文献   

8.
We used PCR to differentiate species in the genus Phytophthora, which contains a group of devastating plant pathogenic fungi. We focused on Phytophthora parasitica, a species that can infect solanaceous plants such as tomato, and on Phytophthora citrophthora, which is primarily a citrus pathogen. Oligonucleotide primers were derived from sequences of a 1,300-bp P. parasitica-specific DNA segment and of an 800-bp P. citrophthora-specific segment. Under optimal conditions, the primers developed for P. parasitica specifically amplified a 1,000-bp sequence of DNA from isolates of P. parasitica. Primers for P. citrophthora similarly and specifically amplified a 650-bp sequence of DNA from isolates of P. citrophthora. Detectable amplification of these specific DNA sequences required picogram quantities of chromosomal DNA. Neither pair of primers amplified these sequences with DNAs from other species of Phytophthora or from the related genus Pythium. DNAs from P. parasitica and P. citrophthora growing in infected tomato stem tissue were amplified as distinctly as DNAs from axenic cultures of each fungal species. This is the first report on PCR-driven amplification with Phytophthora species-specific primers.  相似文献   

9.
The objective of this study was to map the gene(s) conferring resistance to brown stem rot in the soybean cultivar BSR 101. A population of 320 recombinant inbred lines (RIL) was derived from a cross of BSR 101 and PI 437.654. Seedlings of each RIL and parent were inoculated by injecting stems with a suspension of spores and mycelia of Phialophora gregata, incubated in a growth chamber at 17°C, and assessed for resistance by monitoring the development of foliar and stem symptoms. The population also was evaluated with 146 RFLPs, 760 AFLPs, and 4 probes for resistance gene analogs (RGAs). Regression analysis identified a significant association between resistance and several markers on Linkage Group J of the USDA-ARS molecular marker linkage map. Interval analysis with Mapmaker QTL identified a major peak between marker RGA2V-1 and AFLP marker AAGATG152M on Linkage Group J. A second peak, associated only with stem symptoms, was identified between the RFLP B122I-1 and RGA2V-1, also on Linkage Group J. When composite interval mapping with QTL Cartographer was used, two linked QTL were identified with both foliar and stem disease assessment methods: a major QTL between AFLP markers AAGATG152E and ACAAGT260, and a minor QTL between RGA3I-3 and RGA3I-2. These results demonstrate that composite interval mapping gives increased precision over interval mapping and is capable of distinguishing two linked QTL. The minor QTL associated with the cluster of RGA3I loci is of special interest because it is the first example of a disease resistance QTL associated with a resistance gene analog.  相似文献   

10.
Growth and anatomical responses of plants during latent and pathogenic infection by fungal pathogens are not well understood. The interactions between soybean (Glycine max) and two types of the pathogen Phialophora gregata were investigated to determine how plants respond during latent and pathogenic infection. Stems of soybean cultivars with different or no genes for resistance to infection by P. gregata were inoculated with wildtype or GFP and RFP-labeled strains of types A or B of P. gregata. Plants were sectioned during latent and pathogenic infection, examined with transmitted light or fluorescent microscopy, and quantitative differences in vessels and qualitative differences in infection were assessed using captured images. During latent infection, the number of vessels was similar in resistant and susceptible plants infected with type A or B compared to the control, and fungal infection was rarely observed in vessels. During pathogenic infection, the resistant cultivars had 20 to 25% more vessels than the uninfected plants, and fungal hyphae were readily observed in the vessels. Furthermore, during the pathogenic phase in a resistant cultivar, P.gregata type A-GFP was limited to outside of the primary xylem, while P.gregata type B-RFP was observed in the primary xylem. The opposite occurred with the susceptible cultivar, where PgA-GFP was observed in the primary xylem and PgB-RFP was limited to the interfascicular region. In summary, soybean cultivars with resistance to BSR produced more vessels and can restrict or exclude P. gregata from the vascular system compared to susceptible cultivars. Structural resistance mechanisms potentially compensate for loss of vessel function and disrupted water movement.  相似文献   

11.
Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.  相似文献   

12.
Summary Resistance to the fungal pathogen, Phialophora gregata (Allington and Chamberlain) W. Gams, the cause of brown stem rot (BSR) in soybean [Glycine max (L.) Merr.], is an important trait for cultivars grown in the northern USA. A novel tissue culture method was developed where ten soybean cultivars were differentiated on the ability of their excised cotyledons to remain green and initiate callus in a tissue culture medium containing P. gregata culture filtrate. Cultivar BSR classifications by the cotyledon method corresponded to greenhouse root-dip assay classifications in 80%, 100%, and 90% of the three P. gregata isolate treatments. Another method, employing pieces of somatic callus exposed to the culture filtrate, had a 70% average correspondence to the greenhouse results. Physiologic specialization was demonstrated in parallel in vivo/in vitro assays for the first time. These data suggest that the cotyledon method would accurately identify soybean lines resistant to certain aberrant or wild-type P. gregata isolates.  相似文献   

13.
The soybean ubiquitous urease (encoded by GmEu4) is responsible for recycling metabolically derived urea. Additional biological roles have been demonstrated for plant ureases, notably in toxicity to other organisms. However, urease enzymatic activity is not related to its toxicity. The role of GmEu4 in soybean susceptibility to fungi was investigated in this study. A differential expression pattern of GmEu4 was observed in susceptible and resistant genotypes of soybeans over the course of a Phakopsora pachyrhizi infection, especially 24 h after infection. Twenty-nine adult, transgenic soybean plants, representing six independently transformed lines, were obtained. Although the initial aim of this study was to overexpress GmEu4, the transgenic plants exhibited GmEu4 co-suppression and decreased ureolytic activity. The growth of Rhizoctonia solani, Phomopsis sp., and Penicillium herguei in media containing a crude protein extract from either transgenic or non-transgenic leaves was evaluated. The fungal growth was higher in the protein extracts from transgenic urease-deprived plants than in extracts from non-transgenic controls. When infected by P. pachyrhizi uredospores, detached leaves of urease-deprived plants developed a significantly higher number of lesions, pustules and erupted pustules than leaves of non-transgenic plants containing normal levels of the enzyme. The results of the present work show that the soybean plants were more susceptible to fungi in the absence of urease. It was not possible to overexpress active GmEu4. For future work, overexpression of urease fungitoxic peptides could be attempted as an alternative approach.  相似文献   

14.
Pseudomonas chlororaphis subsp. aurantiaca SR1 was evaluated for control of Macrophomina phaseolina in vitro and in soybean plants, for growth promotion of soybean plants and for production of antifungal compounds. Strain SR1 caused a significant inhibition of M. phaseolina in vitro and reduced damping-off in the in vivo assays. In addition, strain SR1 significantly increased shoot and root length and shoot and root dry weight of soybean plants in M. phaseolina infested soil, as compared to control plants in infested soil. Fragments for the phenazine-1-carboxylic acid, pyrrolnitrin and hydrogen cyanide encoding genes were amplified from the DNA of strain SR1 after polymerase chain reaction (PCR) assays with specific primers. Thus, this study establishes that P. chlororaphis subsp. aurantiaca SR1 provides control of M. phaseolina in vivo and suggests that strain SR1 might be applied as an effective biocontrol agent to protect soybean plants from this phytopathogen.  相似文献   

15.
16.
To reduce the reliance on sporocarp records for conservation efforts, information on the below-ground distribution of specific fungal species, such as stipitate hydnoid fungi, is required. Species-specific primers were developed within the internal transcribed spacer (ITS1 and ITS2) regions for 12 hydnoid fungal species including Bankera fuligineoalba, Hydnellum aurantiacum, H. caeruleum, H. concrescens, H. ferrugineum, H. peckii, Phellodon confluens, P. melaleucus, P. niger, P. tomentosus, Sarcodon glaucopus and S. squamosus. The specificity of the primer pairs was tested using BLAST searches and PCR amplifications. All primers amplified DNA only of the target species with the exception of those designed for P. melaleucus. In order to assess the ability of the primers to detect DNA from mycelium in soil, DNA extracted from soil samples taken from around solitary H. peckii sporocarps was amplified with the H. peckii primer 1peck and ITS2. H. peckii DNA was detected in 70% of all soil samples and up to 40 cm away from the base of individual sporocarps. The development of these species-specific primers provides a below-ground alternative for monitoring the distribution of these rare fungi.  相似文献   

17.
The Paecilomyces lilacinus is the most widely tested fungus for the control of root-knot and cyst nematodes. The fungus has also been implicated in a number of human and animal infections, difficulties in diagnosis often result in misdiagnosis or delays in identification leading to a delay in treatment. Here, we report the development of species-specific primers for the identification of P. lilacinus based on sequence information from the ITS gene, and their use in identifying P. lilacinus isolates, including clinical isolates of the fungus. The primer set generated a single PCR fragment of 130 bp in length that was specific to P. lilacinus and was also used to detect the presence of P. lilacinus from soil, roots and nematode eggs. Real-time PCR primers and a TaqMan probe were also developed and provided quantitative data on the population size of the fungus in two field sites. PCR, bait and culture methods were combined to investigate the presence and abundance of the fungus from two field sites in the United Kingdom where potato cyst nematode populations were naturally declining, and results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   

18.
Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.  相似文献   

19.
Soybean (Glycine max) is an important oil crop in agricultural production, but low phosphorus (P) availability limits soybean growth and production. Expansin is a family of plant cell wall proteins and involved in a variety of physiological processes, including cell division and enlargement, root growth and leaf development. To test the potential effects of expansins on crop production, we have developed soybean transgenic plants overexpressing a soybean β‐expansin gene GmEXPB2, which was significantly induced by phosphate (Pi) starvation. The results indicated that constitutive overexpression of GmEXPB2 promoted leaf expansion, sequentially stimulated root growth and consequently resulted in improved P efficiency in the transgenic plants under P‐limited conditions in hydroponics. In particular, when tested in calcareous (CS) and acid soils (AS), the two GmEXPB2 transgenic soybean lines showed above 25 and 40% increases in plant dry weight and P content, respectively to wild‐type plants in low‐P CS, but not in AS. To our knowledge, this is the first report in which improvement of P efficiency could be achieved through constitutive overexpression of an endogenous EXPB gene in soybean. These findings suggest that genetic modification of root and leaf traits might be a suitable strategy for improving crop production in low‐P soils.  相似文献   

20.
A pair of primers homologous to the nolXWBTUV locus generated a 260 bp fragment by PCR only in the presence of Sinorhizobium fredii template DNA of different quality. This resulted in a fast and accurate method for the identification of S. fredii either from pure DNA, whole bacterial cells or nodule extracts. By means of two PCR fragments, one specific for S. fredii (260-bp) and the other specific for Bradyrhizobium japonicum (RSalpha), we found that S. fredii strain SMH12 and B. japonicum E109 were equally efficient at developing nodules on soybean plants grown under controlled environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号