首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young, male pigs eating standard pig chow, ad libitum, received approximately 170 mEq Na and 290 mEq K per day. Electrolyte intake, urinary and fecal electrolyte output, and plasma electrolyte levels were determined daily in 12 deoxycorticosterone acetate (DOCA)-treated pigs and in 6 control pigs. Daily Na and K balances (dietary intake - urinary + fecal output) were calculated. DOCA caused a reduction in urinary Na output from 1.53 mEq/kg/day to 0.57 mEq/kg/day during the first 48 hr following implantation. Escape from the renal sodium retaining effect of DOCA was complete within 3 days, with urinary Na output returning to pre-DOCA levels. Fecal Na output decreased from 0.65 mEq/kg/day during the preimplant period to 0.13 mEq/kg/day during the postimplant period. No escape from GI Na retention occurred by Day 15. Plasma Na rose to significantly higher levels by Day 15. Sodium balance was significantly elevated in DOCA-treated pigs for that first 48 hr postimplant. Urinary K output decreased from 3.50 mEq/kg/day to 1.74 mEq/kg/day during the first 2 days, but returned toward preimplant levels by Day 4. Fecal K output was increased for the first week, and thereafter returned to preimplant levels. Plasma K fell from 3.9 to 2.9 mEq/liter by Day 15. Potassium balance fell slightly in both experimental and control animals. No significant differences in potassium balance were present between the two groups. The control pigs showed no significant changes in plasma electrolyte concentration or in electrolyte balance. It is concluded that DOCA has differential effects on renal and gastrointestinal handling of electrolytes and that DOCA may induce an intracellular shift of potassium in pigs.  相似文献   

2.
The effect of chronic dietary sodium intake on fasting and postprandial plasma atrial natriuretic factor (ANF) levels was examined in 2 studies of normal humans. In Study I, 3 separate groups of normals (n = 8 for each) received diets of either low (L), normal (N) or high (H) daily sodium intake for 7 days. Twenty-four h urines for sodium were obtained on days 6 and 7. Urine sodium excretion for each group was (L) 13.1 +/- 3.7, (N) 150.1 +/- 19.4 and (H) 271.3 +/- 33.6 mEq/day. On the completion of day 7, fasting plasma ANF showed no change with alteration in sodium intake. In contrast, when blood samples were obtained postprandially, significant increases in plasma ANF were observed in the group maintained on high sodium diet. In Study II, a continuous group of normals (n = 8) received the 3 sodium controlled diets for 7 days sequentially (L/N/H). No significant changes in fasting levels of ANF were detected between L/N/H sodium diets. In conclusion, these studies show that the maintenance of sodium balance during chronic changes in sodium intake can occur despite no significant increase in plasma ANF under normal steady state conditions. However, plasma ANF is significantly elevated during chronic high sodium intake, when measured postprandially.  相似文献   

3.
Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.  相似文献   

4.
《Life sciences》1987,41(11):1391-1396
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 ± 8.8 fmol/ml, n=10, Mean ± SEM) in salt-restricted and the highest (151.2 ± 25 fmol/ml, n=14, p < 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 ± 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.  相似文献   

5.
Responses to acute sodium loading depend on the load and on the level of chronic sodium intake. To test the hypothesis that an acute step increase in total body sodium (TBS) elicits a natriuretic response, which is dependent on the chronic level of TBS, we measured the effects of a bolus of NaCl during different low-sodium diets spanning a 25-fold change in sodium intake on elements of the renin-angiotensin-aldosterone system (RAAS) and on natriuresis. To custom-made, low-sodium chow (0.003%), NaCl was added to provide four levels of intake, 0.03-0.75 mmol.kg(-1).day(-1) for 7 days. Acute NaCl administration increased PV (+6.3-8.9%) and plasma sodium concentration (~2%) and decreased plasma protein concentration (-6.4-8.1%). Plasma ANG II and aldosterone concentrations decreased transiently. Potassium excretion increased substantially. Sodium excretion, arterial blood pressure, glomerular filtration rate, urine flow, plasma potassium, and plasma renin activity did not change. The results indicate that sodium excretion is controlled by neurohumoral mechanisms that are quite resistant to acute changes in plasma volume and colloid osmotic pressure and are not down-regulated within 2 h. With previous data, we demonstrate that RAAS variables are log-linearly related to sodium intake over a >250-fold range in sodium intake, defining dietary sodium function lines that are simple measures of the sodium sensitivity of the RAAS. The dietary function line for plasma ANG II concentration increases from theoretical zero at a daily sodium intake of 17 mmol Na/kg (intercept) with a slope of 16 pM increase per decade of decrease in dietary sodium intake.  相似文献   

6.
The objectives were to determine if ANG II-induced hypertension is maintained by activation of endothelin type A (ET(A)) receptors by endogenous ET-1 and if this effect is influenced by salt intake. Male rats were maintained on high sodium intake (HS; 6 meq/day) or on normal sodium intake (NS; 2 meq/day). Hypertension was produced by intravenous infusion of ANG II (5 ng/min) for 15 days. Five-day oral dosing with the selective ET(A)-receptor antagonist ABT-627 (~2 mg. kg(-1). day(-1)) reduced mean arterial pressure (MAP) to baseline levels in rats on HS receiving ANG II infusion, but it did not affect MAP in normotensive HS controls. In rats on NS, ABT-627 only transiently decreased MAP in rats receiving ANG II and slightly reduced MAP in normotensive controls. ABT-627 produced mild retention of sodium and water in NS rats receiving ANG II, but not in any other group. These results indicate that ET-1 plays a role in ANG II-induced hypertension via activation of ET(A) receptors and that this role is more prominent in rats on HS.  相似文献   

7.
The effects of high salt intake on blood pressure and renal function were studied in nine subtotally nephrectomized pregnant ewes (STNxP) and seven intact pregnant ewes (IntP) in late gestation and in eight subtotally nephrectomized nonpregnant ewes (STNxNP) and seven intact nonpregnant ewes (IntNP). STNxP had higher mean arterial pressures (P < 0.02) and plasma creatinine levels (P < 0.001) than IntP. High salt (0.17 M NaCl as drinking water for 5 days) did not change blood pressure in either STNxP or IntP. STNxNP had higher mean arterial pressures (P = 0.03) and plasma creatinine levels (P < 0.001) than IntNP. In STNxNP, blood pressure increased with high salt intake and there was a positive relationship between diastolic pressure and sodium balance (r = 0.497, P = 0.05). This relationship was not present in IntNP, STNxP, or IntP. Because high salt intake did not cause an increase in blood pressure in STNxP, it is concluded that they were protected by pregnancy from further rises in blood pressure. The observed increase in glomerular filtration rate (P < 0.03) and depression of fractional proximal sodium reabsorption (P = 0.003) that occurred in STNxP, but not in STNxNP, in response to high salt may have contributed to this protection. As well, the increased production of vasorelaxants in pregnancy may selectively protect against the occurrence of salt-sensitive hypertension in pregnancy.  相似文献   

8.
The response of the renin-angiotensin system, extracellular fluid volume, plasma volume, plasma sodium and mean arterial blood pressure to an increase in salt intake (8% NaCl in the diet for 10 days) was compared in immature (20 days) and adult (80 days) rats which were either sham-operated or uninephrectomised. Salt feeding induced a significant increase in plasma sodium in immature animals, and a greater suppression of the renin-angiotensin system in immature than in adult rats, although extracellular fluid volume, plasma volume and blood pressure remained unchanged. Following uninephrectomy, however, the renin-angiotensin system was maximally suppressed in both age groups and in younger animals extracellular fluid volume, plasma volume and blood pressure were significantly increased. It is concluded that (i) the renin-angiotensin system in immature rats is more responsive to a chronically increased salt intake, (ii) this greater responsiveness partly compensates for the lower natriuretic efficiency of the kidneys of immature rats, which becomes evident after reduction of renal mass, and (iii) these events bear a relation to the higher susceptibility of prepubertal rats to the hypertensive effect of a chronically increased salt intake.  相似文献   

9.
The present studies were performed to quantify circulating components of the renin-angiotensin-aldosterone axis and to determine the functional importance of this system during alterations in sodium intake in conscious mice. Increasing sodium intake from approximately 200 to 1,000 microeq/day significantly decreased plasma renin concentration from 472 +/- 96 to 304 +/- 83 ng ANG I. ml(-1). h(-1) (n = 5) but did not alter plasma renin activity from the low-sodium level of 7.7 +/- 1.1 ng ANG I. ml(-1). h(-1). Despite the elevated plasma renin concentration, plasma ANG II in mice on low-sodium level averaged 14 +/- 3 pg/ml and was significantly suppressed to 6 +/- 1 pg/ml by high-sodium intake (n = 7). Consistent with the modulation of ANG II, plasma aldosterone significantly decreased from 41 +/- 8 to 8 +/- 3 ng/dl when sodium intake was elevated (n = 6). In a final set of experiments, the continuous infusion of ANG II (20 ng. kg(-1). min(-1)) led to a mild salt-sensitive increase in mean arterial pressure from 108 +/- 2 to 131 +/- 2 mmHg as sodium intake was varied from low to high (n = 7). In vehicle-infused mice, mean arterial pressure was unaltered from 109 +/- 2 mmHg when sodium intake was increased (n = 6). These studies indicate that the physiological suppression of circulating ANG II may be required to maintain a constancy of arterial pressure during alterations in sodium intake in normal mice.  相似文献   

10.
Twenty patients with mild or moderate essential hypertension and not receiving any drug treatment, who had been moderately restricting their sodium intake to around 70 mmol(mEq) a day for at least one month and whose mean blood pressure was then 163/103 mm Hg, were entered into a double blind, randomised crossover study to compare one month''s treatment with slow release potassium chloride tablets (64 mmol potassium chloride a day) with one month''s treatment with a matching placebo. Mean (SEM) urinary sodium excretion on entry to the study was 68 (6.8) mmol/24 h. Mean urinary potassium excretion increased from 67 (6.9) mmol(mEq)/24 h with placebo to 117 (4.6) mmol/24 h with potassium chloride. Supine and standing systolic and diastolic blood pressures did not change significantly with potassium chloride supplementation when compared with pressures while receiving placebo or before randomisation. In patients who are able moderately to restrict their sodium intake doubling potassium as a chloride salt has little or no effect on blood pressure.  相似文献   

11.
Infusion of angiotensin II (ANG II) causes salt-sensitive hypertension. It is unclear whether this is due to the body's inability to suppress ANG II during increased salt intake or, rather, an elevated basal level of plasma ANG II itself. To distinguish between these mechanisms, Sprague-Dawley rats were instrumented with arterial and venous catheters for measurement of arterial pressure and infusion of drugs, respectively. The sensitivity of arterial pressure to salt was measured in four groups with the following treatments: 1) saline control (Con, n = 12); 2) administration of the angiotensin-converting enzyme inhibitor enalapril to block endogenous ANG II (ANG-Lo, n = 10); 3) administration of enalapril and 5 ng.kg(-1).min(-1) ANG II to clamp plasma ANG II at normal levels (ANG-Norm, n = 10); and 4) administration of enalapril and 20 ng.kg(-1).min(-1) ANG II to clamp ANG II at high levels (ANG-Hi, n = 10). Rats ingested a 0.4% NaCl diet for 3 days and then a 4.0% NaCl diet for 11 days. Arterial pressure of rats fed the 0.4% NaCl diet was lower in ANG-Lo (84 +/- 2 mmHg) compared with Con (101 +/- 3 mmHg) and ANG-Norm (98 +/- 4 mmHg) groups, whereas ANG-Hi rats were hypertensive (145 +/- 4 mmHg). Salt sensitivity was expressed as the change in arterial pressure divided by the change in sodium intake on the last day of the 4.0% NaCl diet. Salt sensitivity (in mmHg/meq Na) was lowest in Con rats (0.0 +/- 0.1) and progressed from ANG-Lo (0.8 +/- 0.2) to ANG-Norm (1.5 +/- 0.5) to ANG-Hi (3.5 +/- 0.5) rats. We conclude that the major determinant of salt sensitivity of arterial pressure is the basal level of plasma ANG II rather than the responsiveness of the renin-angiotensin system.  相似文献   

12.
We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg x kg(-1) x day(-1) intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.  相似文献   

13.
Rats were fed a diet containing mestranol, an orally active estrogen, while control rats were fed the same diet without mestranol. After 6 months of these diets, the rats were weighed, blood pressures were measured, and total exchangeable sodium was determined by injecting 24Na and determining the amount of 24Na in the plasma, the plasma Na concentration, and the residual 24Na in each rat. The 16 mestranol-treated rats were hypertensive (mean arterial pressure 135 +/- 3 mm Hg) when compared with the 17 controls (116 +/- 3 mm Hg). Total exchangeable sodium in the mestranol-treated rats averaged 39.94 +/- 0.49 (SEM) mEq/kg body wt, which was very similar to the value of 39.87 +/- 0.63 mEq/kg found in the control rats. Thus, no changes in total exchangeable sodium in mestranol-hypertensive rats were found in these studies.  相似文献   

14.
Release of atrial natriuretic peptide by atrial distension   总被引:9,自引:0,他引:9  
A heterologous radioimmunoassay was used to measure the concentration of immunoreactive atrial natriuretic peptide (iANP) in plasma from the femoral artery of eight chloralose anaesthetized dogs. Mitral obstruction which increased left atrial pressure by 11 cmH2O increased plasma iANP from 97 +/- 10.3 (mean +/- SE) to 135 +/- 14.3 pg/mL. Pulmonary vein distension increased heart rate but did not increase plasma iANP. Bilateral cervical vagotomy and administration of atenolol (2 mg/kg) did not prevent the increase in iANP with mitral obstruction. Samples of blood from the coronary sinus had plasma iANP significantly higher than simultaneous samples from the femoral artery confirming the cardiac origin of the iANP. Release of iANP depends on direct stretch of the atrium rather than on a reflex involving left atrial receptors.  相似文献   

15.
To investigate the time course effect of sodium intake on release and synthesis of atrial natriuretic polypeptide (ANP), plasma and atrial content of ANP were measured in rats which had been fed either a high or a low salt diet for 1, 3, 7, 14 and 35 days. Plasma ANP in rats fed the high salt diet for one day was significantly higher than in those fed the low salt diet. However, there were no significant differences between the groups fed either the high or the low salt diet for 3 days or more. In contrast to the direction of change in plasma ANP, atrial content of ANP in rats fed the high salt diet for one day tended to be lower and was significantly lower in those fed for 3 and 7 days than in the low salt diet group, while there were no significant differences between both groups that were fed for 14 and 35 days. These results suggest that ANP is rapidly released into the circulation when sodium is loaded, however, the atrial storage of ANP remains depleted for about one week.  相似文献   

16.
JG Fodor  B Whitmore  F Leenen  P Larochelle 《CMAJ》1999,160(9):S29-S34
OBJECTIVE: To provide updated, evidence-based recommendations concerning the effects of dietary salt intake on the prevention and control of hypertension in adults (except pregnant women). The guidelines are intended for use in clinical practice and public education campaigns. OPTIONS: Restriction of dietary salt intake may be an alternative to antihypertensive medications or may supplement such medications. Other options include other nonpharmacologic treatments for hypertension and no treatment. OUTCOMES: The health outcomes considered were changes in blood pressure and in morbidity and mortality rates. Because of insufficient evidence, no economic outcomes were considered. EVIDENCE: A MEDLINE search was conducted for the period 1966-1996 using the terms hypertension, blood pressure, vascular resistance, sodium chloride, sodium, diet, sodium or sodium chloride dietary, sodium restricted/reducing diet, clinical trials, controlled clinical trial, randomized controlled trial and random allocation. Both trials and review articles were obtained, and other relevant evidence was obtained from the reference lists of the articles identified, from the personal files of the authors and through contacts with experts. The articles were reviewed, classified according to study design and graded according to level of evidence. In addition, a systematic review of all published randomized controlled trials relating to dietary salt intake and hypertension was conducted. VALUES: A high value was placed on the avoidance of cardiovascular morbidity and premature death caused by untreated hypertension. BENEFITS, HARMS AND COSTS: For normotensive people, a marked change in sodium intake is required to achieve a modest reduction in blood pressure (there is a decrease of 1 mm Hg in systolic blood pressure for every 100 mmol decrease in daily sodium intake). For hypertensive patients, the effects of dietary salt restriction are most pronounced if age is greater than 44 years. A decrease of 6.3 mm Hg in systolic blood pressure and 2.2 mm Hg in diastolic blood pressure per 100 mmol decrease in daily sodium intake was observed in people of this age group. For hypertensive patients 44 years of age and younger, the decreases were 2.4 mm Hg for systolic blood pressure and negligible for diastolic blood pressure. A diet in which salt is moderately restricted appears not to be associated with health risks. RECOMMENDATIONS: (1) Restriction of salt intake for the normotensive population is not recommended at present, because of insufficient evidence demonstrating that this would lead to a reduced incidence of hypertension. (2) To avoid excessive intake of salt, people should be counselled to choose foods low in salt (e.g., fresh fruits and vegetables), to avoid foods high in salt (e.g., pre-prepared foods), to refrain from adding salt at the table and minimize the amount of salt used in cooking, and to increase awareness of the salt content of food choices in restaurants. (3) For hypertensive patients, particularly those over the age of 44 years, it is recommended that the intake of dietary sodium be moderately restricted, to a target range of 90-130 mmol per day (which corresponds to 3-7 g of salt per day). (4) The salt consumption of hypertensive patients should be determined by interview. VALIDATION: These recommendations were reviewed by all of the sponsoring organizations and by participants in a satellite symposium of the fourth International Conference on Preventive Cardiology. They have not been clinically tested. SPONSORS: The Canadian Hypertension Society, the Canadian Coalition for High Blood Pressure Prevention and Control, the Laboratory Centre for Disease Control at Health Canada, and the Heart and Stroke Foundation of Canada.  相似文献   

17.
Avoidance conditioning sessions and isotonic saline (1.3 L/day) were administered to dogs for 12 days under conditions of a low (0.1%) or high (1.5%) calcium diet. Twenty-four-hour mean arterial pressure increased comparably during the stress-salt conditioning periods on both the low (systolic: +16 +/- 5 mm Hg; diastolic: +6 +/- 2 mm Hg) and high (systolic: +17 +/- 4 mm Hg; diastolic: +11 +/- 4 mm Hg) calcium diets. Urine volume, sodium excretion, and serum calcium levels on the high calcium diet were not significantly different from those on the low calcium diet. In a second experiment, calcium was infused continuously for six days into the arterial circulation of normotensive or stress-salt hypertensive dogs at a rate of 0.12-0.23 mEq/min. Although serum calcium levels increased by up to 50% under these conditions, there were no significant effects on 24-hour levels of arterial pressure. In contrast to the protective effect of augmented potassium intake, these findings indicate that calcium intake does not influence the development of stress-salt hypertension in dogs.  相似文献   

18.
Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure was unchanged. Therefore, the total peripheral resistance decreased by 10 +/- 4%. Similar hemodynamic changes were observed during an incremental bicycle exercise test. Plasma concentrations of angiotensin II and norepinephrine were suppressed, whereas plasma pro-B-type natriuretic peptide remained unchanged. In conclusion, high sodium intake was tolerated without any excessive sodium and water retention in medically treated patients with compensated HF. The observation that high sodium intake improves cardiac performance, induces peripheral vasodilatation, and suppresses the release of vasoconstrictor hormones does not support the advice for HF patients to restrict dietary sodium.  相似文献   

19.
Aortic potassium turnover was studied during the development of hypertension induced by salt load in male rats after 70-75% of total renal mass was removed. Systolic blood pressure in the saline-drinking experimental reduced renal mass (RRM) rats steadily increased until the fourth week after surgery and thereafter stayed at the same level. Control RRM rats given tap water for drinking, and unilaterally nephrectomized saline-drinking control rats maintained normal blood pressure. Compared to controls, experimental RRM rats exhibited increased plasma aldosterone concentration while plasma renin activity was low in all groups with no significant difference. Aortic hypertrophy, greater 42K turnover, and elevated 42K exchange were observed with experimental RRM hypertension. Sensitivity to the effect of norepinephrine (NE) on aortic 42K turnover was increased four- to ninefold in the experimental RRM group as compared to controls. These results indicate that reduced renal mass hypertension is associated with increased potassium permeability and NE supersensitivity in vascular smooth muscle.  相似文献   

20.
The acute effects on urinary prostanoid excretion and on renal function induced by pharmacological inhibition of either the angiotensin-converting enzyme or of the cyclooxygenase system, respectively, have been studied in healthy salt-depleted women. Two experimental groups were studied during salt depletion, SD1 (n=8) and SD2 (n=6). Salt depletion was obtained by combining a low sodium chloride dietary intake (< or =60 mmol per day) with natriuretic and potassium sparing treatment. Paired studies were performed in the absence and in the presence of enalapril (SD1 group) or indomethacin (SD2 group). In both paired studies renal function was estimated by the clearance (cl.) method and the urinary concentrations of PGE2, 6-keto-PGF1alpha and TXB2 were estimated by RIA during sustained hypotonic polyuria (induced by oral water load). Enalapril did not influence urinary excretion of prostanoids. Its main significant effects were: (a) a reduction in mean arterial pressure (MAP); (b) an increase in free-water cl. (C(H2O)) and a reduction in osmolar cl. (Cosm); (c) a reduction in the absolute and fractional urinary excretions of sodium and chloride; and (d) a reduction in both the plasma concentration and urinary excretion of potassium. The urinary flow rate and the creatinine cl. were not significantly affected. Indomethacin reduced urinary excretion of prostanoids and in addition it produced the following significant effects: (a) a reduction in urinary flow rate, C(H2O) and Cosm values, and in absolute and fractional urinary excretions of sodium and chloride; and (b) an increase in plasma potassium concentration. MAP, creatinine cl. and urinary potassium excretion were not significantly affected. With regard to the main parameters, both enalapril and indomethacin exerted similar effects on urinary sodium and chloride excretion but opposite effects on C(H2O) and plasma potassium concentration. In conclusion, after enalapril in a salt-depleted state, the functional expression of acute angiotensin II deprivation was partially masked by the activation of a homeostatic system responsible both for improvement in renal salt conservation and for facilitated cellular potassium uptake. After indomethacin in the same setting, the results were consistent with a differential role of prostanoids in modulating or mediating the activities of neuro-hormonal agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号