首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular events in the clamp-loading reaction pathway of DNA replication are revealed by new crystal structures of bacteriophage T4 clamp loader-clamp-DNA complexes that capture two distinct conformations with the clamp open and closed.  相似文献   

3.
The double-stranded (ds) RNA-activated protein kinase, PKR, has a key role in the innate immunity response to viral infection in higher eukaryotes. PKR contains an N-terminal dsRNA-binding domain and a C-terminal kinase domain. In the prevalent autoinhibition model for PKR activation, dsRNA binding induces a conformational change that leads to the release of the dsRNA-binding domain from the kinase, thus relieving the inhibition of the latent enzyme. Structural and biophysical data now favor a model whereby dsRNA principally functions to induce dimerization of PKR via the kinase domain. This dimerization model has implications for other PKR regulatory mechanisms and represents a new structural paradigm for control of protein kinase activity.  相似文献   

4.
The role of conformational change in substrate binding, catalysis and product release is reviewed for 11 enzymes, for which crystal structures are available for the apo, substrate- and product-bound states. The extent of global conformational changes is measured, and the movements of the functional regions involved in catalysis and ligand binding are compared to the rest of the structure. We find that most of these enzymes undergo relatively small amounts of conformational change and particularly small changes in catalytic residue geometry, usually less than 1 A. In some enzymes there is significant movement of the binding residues, usually on surface loops.  相似文献   

5.
6.
Helicobacter pylori: an invading microorganism? A review   总被引:7,自引:0,他引:7  
In this review we evaluate the pros and cons of Helicobacter pylori invasion of epithelial cells as part of the natural history of H. pylori infection. H. pylori is generally considered an extracellular microorganism. However, a growing body of evidence supports the controversial hypothesis that at least a subset of H. pylori microorganisms has an intracellular (intraepithelial) location. Most significant is the fact that H. pylori invades cultured epithelial cells with invasion frequencies similar to Yersinia enterocolitica and better than Shigella flexneri; furthermore, studies of invasion mechanisms suggest that H. pylori invasion of and survival within epithelial cells is not merely a passive event, but requires active participation of the microorganism. Although many studies of human gastric biopsy specimens have failed to demonstrate any intracellular H. pylori, some studies have revealed a minor fraction of H. pylori inside gastric epithelial cells, with possible linkage to peptic ulceration and epithelial cell damage. In conclusion, these data encourage further research to establish whether intracellular H. pylori does play a role in H. pylori colonization of the human stomach and in peptic ulcer pathogenesis.  相似文献   

7.
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori.  相似文献   

8.
9.
10.
Is an intact cytoskeleton required for red cell urea and water transport?   总被引:1,自引:0,他引:1  
In order to determine the membrane protein(s) responsible for urea and water transport across the human red cell membrane, we planned to reconstitute purified membrane proteins into phosphatidylcholine vesicles. In preparatory experiments, we reconstituted a mixture of all of the red cell integral membrane proteins into phosphatidylcholine vesicles, but found that p-chloromercuribenzenesulfonate (pCMBS), which normally inhibits osmotic water permeability by approximately 90%, has no effect on this preparation. The preparation was also unable to transport urea at the high rates found in red cells, though glucose transport was normal. White ghosts, washed free of hemoglobin and resealed, also did not preserve normal urea and pCMBS-inhibitable water transport. One-step ghosts, prepared in Hepes buffer in a single-step procedure, without washing, retained normal urea and pCMBS-inhibitable water transport. Perturbations of the cytoskeleton in one-step ghosts, by removal of tropomyosin, or by severing the ankyrin link which binds band 3 to spectrin, caused the loss of urea and pCMBS-inhibitable water transport. These experiments suggest that an unperturbed cytoskeleton may be required for normal urea and pCMBS-inhibitable water transport. They also show that the pCMBS inhibition of water transport is dissociable from the water transport process and suggest a linkage between the pCMBS water transport inhibition site and the urea transport protein.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Background. Helicobacter pylori is thought to be involved in atrophic body gastritis. We explored the prevalence of H. pylori infection in asymptomatic subjects with gastric parietal cell antibodies, as well as in patients with pernicious anemia, to evaluate a possible role of H. pylori gastric infection in gastric autoimmunity. Patients and Methods. We studied 79 consecutive asymptomatic subjects with parietal cell antibodies, 24 patients with pernicious anemia, and 66 parietal cell antibody‐negative controls. All patients underwent gastric biopsies for histology and detection of H. pylori. Red blood cell count and volume, serum levels of gastrin, pepsinogen I, iron, folic acid, vitamin B12, and circulating antibodies to H. pylori and to intrinsic factor were also determined. Results. We found an atrophic body gastritis in 14 of the 79 asymptomatic subjects with parietal cell antibodies (18%) and in 2 of the 66 controls (3%) (p = .01). Mean levels of gastrin were increased (p < .0001), while those of pepsinogen were reduced (p < .001) compared with controls. H. pylori was identified at the gastric level and/or circulating anti‐H. pylori antibodies were detected in 46 parietal cell antibody‐positive subjects (58%) compared with 26 controls (39%) (p = .03). In patients with pernicious anemia we found an atrophic body gastritis in 18 of 24 cases (75%) (p < .001 vs. controls). Mean levels of gastrin were markedly increased (p < .0001) and those of pepsinogen I decreased (p < .0001) relative to controls. Only five of these patients (21%) had evidence of H. pylori infection compared with 46 of the parietal cell antibody‐positive subjects (58%) (p = .003) and 26 of the controls (39%). Considering all patients with gastric autoimmunity (i.e. with parietal cell antibodies and/or with pernicious anemia), H. pylori was found in 44 of 72 of those without atrophy (61%) but in 6 of 31 with gastric body atrophy (19%) (p < .001), indicating that H. pylori infection is greatly reduced when gastric acid secretion decreases. Conclusions. The frequent detection of H. pylori infection in subjects with early gastric autoimmunity, indicated by the presence of parietal cell antibodies, suggests that H. pylori could have a crucial role in the induction and/or the maintenance of autoimmunity at the gastric level.  相似文献   

19.
BACKGROUND: There is no general consensus about the specific oxygen and carbon dioxide requirements of the human pathogen Helicobacter pylori. This bacterium is considered a microaerophile and consequently, it is grown under atmospheres at oxygen tensions 5-19% and carbon dioxide tensions 5-10%, both for clinical and basic and applied research purposes. The current study compared the growth of H. pylori in vitro, under various gas atmospheres, and determined some specific changes in the physiology of bacteria grown under different oxygen partial pressures. METHODS: Measurements of bacterial growth under various conditions were carried out employing classical solid and liquid culture techniques. Enzymatic activities were measured using spectrophotometric assays. RESULTS: H. pylori and all the other Helicobacter spp. tested had an absolute requirement for elevated carbon dioxide concentrations in the growth atmosphere. In contrast with other Helicobacter spp., H. pylori can tolerate elevated oxygen tensions when grown at high bacterial concentrations. Under 5% CO(2), the bacterium showed similar growth in liquid cultures under oxygen tensions from microaerobic (< 5%) to fully aerobic (21%) at cell densities higher than 5 x 10(5) cfu/ml for media supplemented with horse serum and 5 x 10(7) cfu/ml for media supplemented with beta-cyclodextrin. Evidence that changes occurred in the physiology of H. pylori was obtained by comparing the activities of ferredoxin:NADH (nicotinamide adenine dinucleotide) oxidoreductases of bacteria grown under microaerobic and aerobic atmospheres. CONCLUSIONS: H. pylori is a capnophile able to grow equally well in vitro under microaerobic or aerobic conditions at high bacterial concentrations, and behaved like oxygen-sensitive microaerophiles at low cell densities. Some characteristics of H. pylori cells grown in vitro under microaerobic conditions appeared to mimic better the physiology of organisms grown in their natural niche in the human stomach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号