首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To examine the ability of human macrophage-granulocyte colony-forming cells (CFC) to survive a defined freeze-thaw procedure, we cultured fresh and cryopreserved marrow cells from the same specimens in a methylcellulose system. The cultures were stimulated by two kinds of conditioned medium, fibroblast (FCM) or leukocyte (LCM). We have shown previously that LCM stimulated CFC smaller in size than those stimulated by FCM. Cultures of cryopreserved and fresh cells stimulated by LCM showed no significant difference either in the number of colonies formed or in colony formation kinetics. In contrast with FCM stimulation there was a significant decrease in colony number in cryopreserved specimens, and in addition, the kinetics of colony formation between cryopreserved and fresh specimens were distinctly different. Cryopreserved specimens stimulated with serially diluted FCM or LCM always exhibited their respective kinetic pattern of colony formation. Cell size distribution analysis and morphological examination of fresh and cryopreserved cells revealed that following freeze-thaw there was a marked reduction in cells 9 μm or larger, and that there was a shift in the morphological cell differential from myeloid to lymphoid predominance. From these observations, we concluded that CFC responsive to LCM stimulation survived the freeze-thaw procedure better than CFC responsive to FCM stimulation.  相似文献   

3.
Human rIL-1 alpha significantly enhanced splenic plaque-forming cells (PFC) to SRBC in vitro and in vivo. A single i.p. injection was sufficient to produce a fivefold or greater increase in the generation of PFC in a primary response. IL-1 treatment resulted in an increased production of Ag-specific PFC, both in vitro and in vivo, in combination with suboptimal doses of Ag. When IL-1 was given with a primary dose of Ag in vivo, an enhanced IgG response occurred. IL-1 enhanced in vivo carrier priming for an anti-hapten PFC response, indicating increased Th activity. Furthermore, T cells from spleens of mice treated with IL-1 provided significantly more help in both carrier (SRBC)- and hapten (TNP)- specific PFC. The enhancement of PFC by IL-1 in vitro occurred even in the presence of an excess of neutralizing anti-IL-2 antibody. These results suggest that IL-1 may enhance T cell-dependent antibody production in part by increasing Th activity, and that the mechanism of IL-1 action in increasing antibody production involves pathways in addition to the induction of IL-2 secretion.  相似文献   

4.
Acute myeloid leukaemia (AML) blasts rarely express the B7 family of co-stimulatory molecules and do not elicit a clinically significant autologous T-lymphocyte anti-tumour response. The aim of this study was the in vitro modification of AML blasts to an antigen-presenting cell phenotype characterised by upregulated expression of the co-stimulatory molecule CD80 (B7-1). Circulating AML cells were induced to undergo partial differentiation in culture with the cytokines IL-3, IL-6 and GM-CSF; they exhibited variable upregulation of CD80 and continued to express MHC class I and II. These cells remained viable to day 20, in contrast with normal peripheral blood mononuclear cells (PBMNC), which did not survive under the culture conditions. In contrast to unmanipulated blasts, cultured leukaemic cells expressed B7-1. Where initial cytogenetic abnormalities were present, they were also seen in flow-sorted CD80-expressing cells after culture in cytokines, indicating their malignant origin. The immunogenic potential of these cultured cells was highlighted by allogeneic and autologous mixed lymphocyte reactions, in which both differentiated, but not unmanipulated, blasts produced expansion of T-lymphocyte numbers. Autologous cytotoxic T-lymphocyte (CTL) assays indicated specific killing of B7-1+ leukaemic cells, which was greatly enhanced after priming of the T-lymphocytes by B7-1+ blasts prior to the CTL assay, then enabling the CTL to lyse both unmanipulated and differentiated leukaemic cells.  相似文献   

5.
The effects of recombinant murine macrophage inflammatory protein (MIP)-1 beta and MIP-2 on the suppressive activity of MIP-1 alpha were tested using colony formation by human and murine bone marrow burst-forming unit-erythroid (BFU-E), colony-forming unit-granulocyte erythroid macrophage, megakaryocyte (CFU-GEMM), and colony-forming unit-granulocyte macrophage (CFU-GM) progenitor cells. MIP-1 beta, but not MIP-2, when added with MIP-1 alpha to cells, blocked the suppressive effects of MIP-1 alpha on both human and murine BFU-E, CFU-GEMM, and CFU-GM colony formation. Similar results were observed regardless of the early acting cytokines used: human rGM-CSF plus human rIL-3, and two recently described potent cytokines, a genetically engineered human rGM-CSF/IL-3 fusion protein and MGF, a c-kit ligand. The more potent the stimuli, the greater the suppressive activity noted. Pulse treatment of hu bone marrow cells with MIP-1 alpha at 4 degrees C for 1 h was as effective in inhibiting colony formation as continuous exposure of cells to MIP-1 alpha, and the pulsing effect with MIP-1 alpha could not be overcome by subsequent exposure of cells to MIP-1 beta. Also, pulse exposure of cells to MIP-1 beta blocked the activity of subsequently added MIP-1 alpha. For specificity, the action of a nonrelated myelosuppressive factor H-ferritin, was compared. MIP-1 alpha and H-ferritin were shown to act on similar target populations of early BFU-E, CFU-GEMM, and CFU-GM. MIP-1 beta did not block the suppressive activity of H-ferritin. Also, hemin and an inactive recombinant human H-ferritin mutein counteracted the suppressive effects of the wildtype H-ferritin molecule, but did not block the suppressive effects of MIP-1 alpha. These results show that MIP-1 beta's ability to block the action of MIP-1 alpha is specific. In addition, the results suggest that MIP-1 alpha and MIP-beta can, through rapid action, modulate early myeloid progenitor cell proliferation.  相似文献   

6.
In vitro experiments performed by several investigators have demonstrated that IL-7 is a growth factor for immature B lymphocytes, thymocytes, and mature T lymphocytes. To evaluate the potential therapeutic use for human rIL-7 (rhuIL-7) as a hematopoietin, we have studied the in vivo hematopoietic effects of rhuIL-7 in mice. In these experiments, sublethally irradiated and normal mice were treated with or without rhuIL-7 for up to 26 days. Administration of rhuIL-7 significantly increased the white blood cell count in the peripheral blood and spleen in both normal and irradiated mice. Treatment with rhuIL-7 also accelerated lymphocytic recovery in irradiated mice. Precursor and mature B lymphocytes showed the greatest expansion in response to rhuIL-7 administration, with smaller increases in T lymphocytes being observed. In mice recovering from high dose irradiation, rhuIL-7 treatment resulted in preferential expansion of CD8+ T lymphocytes and more rapid normalization of the CD4/CD8 ratios. Differential analysis of peripheral blood smears demonstrated that rhuIL-7 also increased the numbers of immature granulocytes in both normal and irradiated mice. Moreover, administration of rhuIL-7 to normal, irradiated, cyclophosphamide-pretreated, or 5-fluorouracil-pretreated mice increased the number of acetylcholinesterase-positive megakaryocytes in the spleen, but not the bone marrow. Therefore, although the major in vivo effects of rhuIL-7 were on cells of the lymphocytic lineage, rhuIL-7 also increased the numbers of some immature cells of the myeloid lineage.  相似文献   

7.
8.
Enhanced prostaglandin (PG) biosynthesis is a hallmark of inflammation, and interleukin-1 (IL), a proinflammatory cytokine, is a potent stimulus of PG production. We investigated the mechanisms of IL-1 alpha-enhanced PG synthesis in serum-stimulated mesangial cells. The rIL-1-stimulated increase in PGE2 synthesis was dose- and time-dependent and inhibited by both cycloheximide and actinomycin D. Phospholipase (PL) activity was increased 5- to 10-fold in acid extracts of rIL-1-treated cells as measured by arachidonate release from exogenous [14C]arachidonyl-phosphatidyl-ethanolamine. This induced phospholipase activity was Ca(2+)-dependent and inhibited by the PLA2 inhibitors, aristocholic acid, 7,7-dimethyl-5,8-eicosadienoic acid, and p-bromophenacylbromide, but not by the 1,2-diacylglycerol lipase inhibitor RHC 80267. The rIL-1-stimulated PLA2 had an alkaline pH optimum, and phosphatidylethanolamine was preferred over phosphatidylcholine as substrate. The PLA2 activity increased by rIL-1 was inhibited in cells coincubated with cycloheximide and was measurable after 6 h. A sensitive and specific solution hybridization assay demonstrated a coordinate time-dependent induction of non-pancreatic PLA2 mRNA expression which was increased at least 6-fold by 24 h. In whole cells, IL-1 had no effect on basal [3H]arachidonic acid release but vasopressin (1 microM)-stimulated release was potentiated 2- to 3-fold, suggesting that IL-1 may prime cells for increased PG synthesis via increased PLA2 activity. Thus IL-1 directly stimulates, as well as primes cells for, enhanced PG synthesis, in part, by increasing PLA2 activity through new synthesis of a non-pancreatic (Type II) PLA2.  相似文献   

9.
The radioprotective and restorative (therapeutic) effects of human recombinant interleukin-1 beta (IL-1 beta) on the population of bone marrow CFU-S of mice, subjected to either sublethal doses of ionising irradiation itself or the same irradiation in combination with thermal burn, are investigated. Both the effects of the agent are registered under both in vitro and in vivo irradiation in semi-, syn- and allogeneic animals. If the irradiation was combined with thermal burn, the "therapeutic" effect of the agent was demonstrated at irradiation dose equal to 3.06 Gy rather than to 6.12 Gy. If the bone marrow cells were irradiated in vitro in dose 3.06 Gy with the following heat shock at 42 degrees C for 10-20 min, the "therapeutic" effect of IL-1 beta was seen only if it was added to cells before rather than after irradiation. The radioprotective effect of IL-1 beta is maintained under in vitro, as well as in vivo conditions in the allogeneic system of transplantation of the CBA donor bone marrow to the C57BL mice.  相似文献   

10.
The effect of recombinant alpha interferon (INF) and of antilymphocyte globulin (ALG) to the colony stimulating factor (CSF) production was examined with in vitro culture of the bone marrow of healthy and of aplastic anaemia (AA) persons. In healthy persons the supernatant of lymphocytes preincubated with PHA and ALG was found to show a stimulating effect to clonogenic properties of marrow progenitors, the mentioned effect being not in proportion to the concentration value. Similar properties are shown by interferon in these persons. In patients with aplastic anaemia, a considerable stimulating ALG effect to the granulocytic formation of colonies and a lesser stimulating effect of interferon were shown.  相似文献   

11.
12.
A synthetic peptide corresponding to 86-93 of the human type I IL-1 receptor and its analogues bound human recombinant (hr) IL-1 (alpha and beta) and inhibited dose-dependently both Con A-stimulated proliferation of mouse spleen cells and hrIL-1 beta-stimulated formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in rat bone marrow cell cultures. Furthermore, hrIL-1 beta-induced mouse paw edema was dose-dependently inhibited by systemic administration (ip) of the synthetic peptide. These results suggest that one of the IL-1 binding sites of the human type I IL-1 receptor comes to the region of 86-93 and the synthetic peptide having the ability to bind hrIL-1 (alpha and beta) blocks the biological activities of exogenous hrIL-1 beta and endogenous mouse IL-1.  相似文献   

13.
Human chorionic gonadotrophin (hCG) plus PGF2 alpha was compared with GnRH plus PGF2 alpha for estrus synchronization of dairy cows. There were 3 treatments: GnRH analog (Buserelin, 12.6 micrograms) plus PGF2 alpha analog (Cloprostenol, 150 micrograms) 6 d later (GnRH + PGF[Day 6]); hCG (2000 IU) plus PGF2 alpha 9 d later (hCG + PGF[Day 9]); and hCG plus PGF2 alpha 6 d later (hCG + PGF[Day 6]). Treatment occurred either Days 55 to 90 or Days 91 to 135 post partum. For responses during the first 10 d after PGF2 alpha administration, estrus synchronization (P = 0.24), efficacy (percentage of treated pregnant; P = 0.20) and conception (percentage of inseminated pregnant; P = 0.23) rates were not different among the 3 treatments. Cows treated between Days 55 and 90 had a higher rate (P < 0.05) of detected estrus during this period (69% for GnRH + PG [Day 6], 70% for hCG + PGF[Day 9] and 72% for hCG + PGF[Day 6]) compared with cows treated between Days 91 and 135 (52% for GnRH + PGF[Day 6], 50% for hCG + PGF[Day 9] and 57% for hCG + PGF[Day 6]). Efficacy of treatment was higher (P < 0.05) in animals treated between Days 55 and 90 (54% for GnRH + PGF[Day 6], 56% for hCG + PGF[Day 9] and 63% for hCG + PGF [Day 6]) compared to animals treated between Days 91 and 135 (36% for GnRH + PGF[Day 6], 35% for hCG + PGF[Day 9] and 47% for hCG + PGF[Day 6]). There were no significant differences in conception between Days 51 and 90 and Days 91 and 135. The interval between parturition-first AI with conception was significantly (P < 0.001) shorter in GnRH + PGF (Day 6; 106 d), hCG + PGF (Day 9; 109 d) and hCG + PGF (Day 6; 103 d) treated cattle than in 106 untreated animals (136 d). Thus, GnRH plus PGF2 alpha or hCG plus PGF2 alpha treatments elicited similar effects in estrus synchronization, treatment efficacy, and conception rate in post-partum dairy cows.  相似文献   

14.
15.
16.
In this study, recombinant human IL-1 alpha (rhIL-1 alpha) was used to protect normal and tumor-bearing BALB/c mice from the acute toxicity caused by lethal doses of cyclophosphamide (Cy) and 5-fluorouracil. Pretreatment of mice for 7 days with 10,000 U/day of rhIL-1 alpha protected 70 to 100% of mice from the acute death induced by lethal doses of both Cy (380 mg/kg) and 5-fluorouracil (250 mg/kg). In contrast, post-treatment of mice with single or multiple doses of rhIL-1 alpha was not chemoprotective. Pretreatment of mice with rhIL-1 alpha increased the acute LD90 of Cy from 380 mg/kg to greater than 500 mg/kg in normal mice, an LD90 dose-modifying effect of at least 1.25, was accompanied by a more rapid recovery from neutropenia and a less severe reduction in the number of bone marrow single lineage monocyte, myeloid, or myelomonocytic colonies. Some of the mice (10 to 50%) that were successfully protected by pretreatment with rhIL-1 alpha died after day 50. These mice consistently presented with extensive pulmonary inflammation and fibrosis at death. Mice bearing murine renal cancer (Renca) were also protected from the acute toxic effects of Cy (450 mg/kg) by pretreatment with rhIL-1 alpha. Renca-bearing mice pretreated with rhIL-1 alpha and either sublethal (300 mg/kg) or lethal (450 mg/kg) doses of Cy exhibited enhanced survival times over those of untreated Renca-bearing mice. Interestingly, the cause of death in Renca-bearing mice that ultimately failed treatment with rhIL-1 alpha plus 300 mg/kg Cy was recurrent tumor, whereas most mice treated with rhIL-1 alpha plus 450 mg/kg Cy had no detectable tumor, although several died from late pulmonary inflammation and fibrosis. Thus, the dose escalation of Cy in rhIL-1 alpha-pretreated mice results in greater antitumor effects of Cy. However, the dose escalation of some cytotoxic agents allowed by the use of myelostimulatory agents can result in late fatal complications not detected in acute toxicity testing.  相似文献   

17.
Three human leukemia cell lines (TALL-101, AML-193, and MV4-11) that require granulocyte/macrophage-colony stimulating factor (GM-CSF) for growth in a chemically defined medium were examined for their response to recombinant human (rh) cytokines. Either rh interleukin (IL)-3 or rhGM-CSF alone supported the long term growth of all three cell lines, and the two growth factors acted synergistically to stimulate the proliferation of the early T lymphoblastic leukemia (TALL-101) and of the monocytic leukemia (AML-193) cells. However, IL-3 antagonized the proliferation of the biphenotypic B-myelomonocytic leukemia (MV4-11) cells in the presence of GM-CSF when both factors were used at very low concentrations. The rh granulocyte (G)-CSF independently supported the long and short term growth of AML-193 and MV4-11, respectively, and synergized with GM-CSF in inducing proliferation of these cells. By contrast, G-CSF did not stimulate TALL-101 cell growth and antagonized the effect of GM-CSF such that proliferation was arrested. Although neither rh macrophage (M)-CSF nor rhIL-1 alpha independently promoted proliferation of the three leukemia cell lines, these cytokines were able to either up- or down-regulate the GM-CSF-dependent growth of these cells. Taken together, these data demonstrate that leukemic cells often require the synergistic action of several cytokines for optimal growth, whereas other combinations of factors may be growth-inhibitory. This raises the possibility that multiple hemopoietic growth factors sustain or control leukemic cell proliferation also in vivo. In addition, the observation the G-CSF, M-CSF, and IL-1 alpha can, in some cases, arrest cell proliferation without inducing differentiation suggests that the programs of proliferative arrest and differentiation in leukemic cells can be dissociated.  相似文献   

18.
We observed the effects of a chinese herb medicine Sho-saiko-to on the lethal and antitumor activities of recombinant human tumor necrosis factor (rhTNF) administered in mice. Sho-saiko-to was noted to protect the rhTNF-induced lethality in galactosamine-hypersensitized mice, and also Sho-saiko-to pretreated mice was protected against the decrease of rectal temperature after rhTNF administration. On the other hand, there was a remarkable enhancement of antitumor activity of rhTNF by Sho-saiko-to pretreatment. These results suggest that Sho-saiko-to drug may protect mice from severe shock syndrome induced by rhTNF.  相似文献   

19.
Tenascin-C (TN-C), an extracellular matrix glycoprotein, is known to be expressed in uterine stroma in the peri-implantation period. Examination of the spatiotemporal pattern during early pregnancy using immunohistochemistry and in situ hybridization revealed TN-C expression in the stroma beneath the luminal epithelia of the murine endometrium on Days 0 and 1 of pregnancy, subsequent disappearance, and reappearance on Day 4. After decidualization, tissue around the deciduoma was positive. In situ hybridization demonstrated TN-C production by the stromal cells adjacent to the epithelia. To investigate the regulation of TN-C expression in vitro, murine uterine stromal and epithelial cells were isolated and cultured. Addition of interleukin-1 alpha (IL-1 alpha) and prostaglandin E(2) (PGE(2)) and F(2 alpha) (PGF(2 alpha)) induced TN-C expression in the stromal cells at both protein and mRNA levels, while the sex steroid hormones, progesterone and ss-estradiol, exerted little effect. Immunohistochemistry using anti-IL-1 alpha antibody showed epithelial cells to be positive on Days 2-4 of pregnancy, and addition of progesterone but not ss-estradiol enhanced IL-1 alpha expression in epithelial cells in vitro. In a culture insert system, TN-C expression by stromal cells cocultured with epithelial cells was induced by addition of progesterone alone that was blocked by additions of anti-IL-1 alpha antibody. Collectively, these findings indicate that TN-C expression in the preimplantation period is under the control of progesterone, but not directly, possibly by the paracrine and autocrine intervention of IL-1 alpha secreted by epithelial cells and PGE(2) and PGF(2 alpha) secreted by stromal cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号