首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular nuclease activities of Alteromonas espejiana sp. BAL 31 are mediated by at least two distinct protein species that differ in molecular weights and catalytic properties. The two species that have been purified to homogeneity and characterized, the "fast" (F) and "slow" (S) enzymes, both possess an exonuclease activity that shortens both strands of duplex DNA, with the F nuclease displaying a much greater (approximately 19-fold) turnover number for this degradation than the S species. In the present article, it is shown that the F species also mediates the terminally directed hydrolysis of a linear duplex RNA, gradually shortening molecules of this substrate through a mechanism that results in the removal of nucleotides from both the 3' and the 5' ends. This degradation proceeds with very infrequent introduction of scissions away from the termini as demonstrated by gel electrophoretic examination of the products of partial degradation, both in duplex form and after denaturation by reaction with CH3HgOH, and by electron microscopic characterization of duplex partially degraded molecules. The apparent Michaelis constant and turnover number have been determined. At equimolar enzyme concentrations in the limit of high substrate concentration, the F nuclease will degrade duplex RNA at a rate 0.021 +/- 0.010 (S.D.) times that for a duplex DNA of comparable guanine + cytosine content. The S species, by contrast, shows very little activity against the duplex RNA substrate relative to that of the F enzyme.  相似文献   

2.
Two molecularly and kinetically distinct major species of the extracellular nuclease BAL 31 from Alteromonas espejiana, previously characterized as the "fast" (F) and "slow" (S) BAL 31 nucleases, have been evidenced to derive from proteolysis starting from a still larger (approximately 120 kDa) precursor nuclease. The expected protease activity in the culture fluid has been confirmed and is strongly dependent on the cell growth phase. The disappearance of the largest nuclease species with the concomitant sequential appearance of first the F and then the S species has been demonstrated for nuclease obtained from culture supernatants as a function of cell growth phase. Nuclease from periplasmic extracts displayed very little of the F and S nucleases. Treatment of purified F nuclease with Pronase or subtilisin readily converted it to species with only a few percent of the native exonuclease activity against duplex DNA but retaining much of the initial activity against single-stranded DNA. Electrophoresis in nuclease-detecting gels demonstrated a parallel conversion of the larger species to one indistinguishable in molecular weight from the S species. The observed loss of exonuclease activity could correspond to the conversion of the F to the S nuclease. However, treatment of S nuclease with subtilisin resulted in a drastic reduction of exonuclease activity of this enzyme on duplex DNA with retention of most of the activity against single-stranded and nicked circular duplex DNA substrates. Evidence of internal proteolysis of the S nuclease could be seen after electrophoresis in denaturing gels but only after the denaturation buffer was adjusted to 6 M in urea. The preferential removal of the exonuclease activity may enhance the usefulness of the BAL 31 nuclease in such applications as heteroduplex mapping.  相似文献   

3.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

4.
Mechanism of exonuclease action of BAL 31 nuclease   总被引:2,自引:0,他引:2  
Two kinetically and molecularly distinct forms ('fast' (F) and 'slow' (S] of nuclease BAL 31 from Alteromonas espejiana effect the length reduction of linear duplex DNAs through a 3'----5'-directed exonuclease activity in conjunction with an endonuclease activity against the 5'-terminated single-stranded tails generated by the exonuclease activity. No evidence for a 5'----3' mode of exonuclease action was seen. Single-stranded DNA is degraded predominantly by the 3'----5' exonuclease action. There is a pronounced decrease, to roughly constant values, of the average lengths of the tails in partially digested duplexes at a constant extent of digestion with increasing nuclease concentration. This decrease correlates with an increasing extent of ligatability, in the absence of repair, under conditions favoring the joining of fully base-paired ends. The exonuclease action, at least against duplex substrates, is quasi-processive and removes approx. 18 and 28 nucleotides per productive enzyme-substrate encounter for the S and F species, respectively. The dependence on Ca2+ and Mg2+ concentrations of the activities has been determined.  相似文献   

5.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

6.
The recBC nuclease (also called exonuclease V) has been partially purified from Escherichia coli K-12 strains carrying the thermosensitive recB270, recC271, and recB270 recC271 mutations. Of the multiple activities associated with the enzyme, only the adenosine 5'-triphosphate-dependent exonucleolytic hydrolysis of duplex deoxyribonucleic acid (DNA) is abnormally thermolabile. The exo- and endonucleolytic degradation of single-stranded DNA is no more thermosensitive than that catalyzed by the wild-type enzyme. These results suggest that the defects in genetic recombination, DNA repair, and the maintenance of cell viability observed in recBC mutants in vivo result primarily from the specific loss of adenosine 5'-triphosphate-dependent exonuclease active on duplex DNA.  相似文献   

7.
The extracellular nuclease from Alteromonas espejiana BAL 31 is a highly sensitive endonucleolytic probe for lesions that distort the helical structure of duplex DNA. The nuclease can be isolated as two distinct molecular species, the 'fast' (F) and 'slow' (S) species, which have different kinetic properties. When nonsupercoiled, covalently closed circular phage PM2 DNA containing apurinic sites introduced by heating at acid pH was incubated with individual fractions from a chromatographic column which separated the two nuclease species, cleavage of the DNA was observed which was greatly in excess of control levels using nonmodified DNA. The initial rates of such cleavage clearly paralleled the peaks of both absorbance and nuclease activity against single-stranded and linear duplex substrates. When samples of apurinic DNA were incubated with pooled fractions from the same column representing pure F and S nucleases, respectively, the rate and extent of the cleavage observed was dependent upon the average number of apurinic sites per molecule. Cleavage was readily detectable in samples containing an average of 1.1 apurinic sites per molecule with both species of the enzyme. These results indicate that either species of the BAL 31 nuclease can recognize and cleave in response to a single apurinic site in duplex DNA. The F nuclease appears to be approx. 2.5-times as efficient in cleaving DNA containing apurinic lesions as the S enzyme in extended incubations.  相似文献   

8.
A ribonuclease that hydrolyzes either linear duplex or single-stranded RNA in an exonucleolytic manner has been partially purified from Ehrlich ascites tumor cell nucleoli and is free from other ribonucleases. The enzyme will also degrade the RNA complement of an RNA X DNA duplex; however, no nuclease activity is observed on linear duplex or single-stranded DNA. The exonuclease acts on RNA nonprocessively from the 3' end releasing 5'-mononucleotides. The enzyme has a broad pH optimum around pH 8.0, requires Mg2+ or Mn2+ (0.06 mM) for optimum activity, and is sensitive to ethylenediaminetetraacetic acid and N-ethylmaleimide inhibition. Monovalent cations including K+, Na+, and NH4+ are inhibitory. Gel filtration studies of this enzyme gave a Stokes radius of 40 A. Sedimentation velocity measurements in glycerol gradients yield a S20,W of 6.0 S. From these values a native molecular weight of 100 000 was calculated. Copurification of the single- and double-stranded activities, identical reaction requirements, and identical heat-inactivation curves strongly suggest that both activities reside with the same enzyme.  相似文献   

9.
The culture medium of Pseudomonas BAL 31 contains endonuclease activities which are highly specific for single-stranged DNA and for the single-stranded or weakly hydrogen-bonded regions in supercoiled closed circular DNA. Exposure of nicked DNA to the culture medium results in cleavage of the strang opposite the sites of preexisting single-strand scissions. At least some of the linear duplex molecules derived by cleavage of supercoiled closed circular molecules contain short single-stranded ends. Single-strand scissions are not introduced into intact, linear duplex DNA or unsupercoiled covalently closed circular DNA. Under these same reaction conditions, 0X174 phage DNA is extensively degraded and PM2 form I DNA is quantitatively converted to PM2 form III linear duplexes. Prolonged exposure of this linear duplex DNA to the concentrated culture medium reveals the presence of a double-strand exonuclease activity that progressively reduces the average length of the linear duplex. These nuclease activities persist at ionic strengths up to 4 M and are not eliminated in the presence of 5% sodium dodecyl sulfate. Calcium and magnesium ion are both required for optimal activity. Although the absence of magnesium ion reduces the activities, the absence of calcium ion irreversibly eliminates all the activities.  相似文献   

10.
Purified DNA polymerase III has two distinct exonuclease activities: one initiates hydrolsis at the 3 termini, and the other at the 5 termini of single-stranded DNA. Both exonucleases have the same relative mobility on polyacrylamide gels as the polymerase activity. Molecular identity of the three activities is further indicated by their comparative rates of thermal inactivation and their sensitivity to ionic strength. The 3-5 exonuclease activity hydrolyzes only single-standed DNA. The rate of hydrolysis is twice the optimal rate of polymerization. The products are 5-mononucleotides, but the 3-5 activity is unable to cleave free dinucleotides or the 5-terminal dinucleotide of a polydeoxynucleotide chain. The 3-5 activity will not degrade 3-phosphoryl-terminated oligonucleotides such as d(pTpTpTp). The 5-3 activity catalyzes the hydrolysis of single-stranded DNA at 1/15 the rate of the 3-5 exonuclease. The 5-3 exonuclease requires the presence of a 5 single-stranded terminus in order to initiate hydrolysis, but will thereafter proceed into a double-stranded region. Although the limit products found during hydrolysis of substrates designed to assay specifically the 5-3 activity are predominantly mono- and dinucleotides, these products probably arise from the subsequent hydrolysis of oligonucleotides by the 3-5 hydrolytic activity. This interpretation is supported by (a) the relatively greater activity of the 3-5 exonuclease, (b) the inability of the enzyme to degrade d(pTpTpTp), and (c) the release of the 5 terminus of a single-stranded DNA molecule as an oligonucleotide. The 5-3 exonuclease attacks ultraviolet-irradiated duplex DNA which has first been incised by the Micrococcus luteus endonuclease specific for thymine dimers in DNA.  相似文献   

11.
Under conditions which favor the duplex structure of DNA, mung bean nuclease catalyzes a limited number of double-strand cleavages (probably less than 50) in the interior of native T7 DNA. However, under conditions which are not as favorable to a tight helical structure, the large duplex polymers previously produced are completely degraded from their termini with a continuous accumulation of mono-, di-, and trinucleotides. The terminally directed activity is an intrinsic property of the enzyme molecule because (1) it is inactivated and reactivated in parallel with the single-strand activity and (2) the two activities coelectrophorese on analytical gels. Kinetic measurements indicate that the apparent Km for the terminally directed hydrolysis of native DNA is relatively high. The pH optimum for both the hydrolysis of denatured DNA and the terminally directed hydrolysis of native DNA becomes more acidic with increasing salt concentration. The relative preference for single-stranded structures increases as the pH becomes more basic.  相似文献   

12.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

13.
The RecBCD-K177Q enzyme has a lysine-to-glutamine mutation in the putative ATP-binding sequence of the RecD protein (Korangy, F., and Julin, D.A. (1992) J. Biol. Chem. 267, 1727-1732). We have compared the enzymatic properties of the RecBCD-K177Q enzyme with those of the wild-type RecBCD enzyme from Escherichia coli. The purified RecBCD-K177Q enzyme has ATP-dependent nuclease activity on double-stranded or denatured DNA which is reduced (4-14-fold less) compared with the wild type. The kcat and Km(ATP) for ATP hydrolysis stimulated by double-stranded DNA are both reduced in RecBCD-K177Q, so that kcat/Km(ATP) is relatively unaffected. The mutant enzyme is impaired in its ability to unwind DNA in an assay where single-stranded DNA is trapped by the single-stranded DNA binding protein and subsequently degraded by S1 nuclease. The mutant enzyme also produces fewer acid-soluble DNA nucleotides per ATP hydrolyzed than does the wild type, at low ATP concentrations (less than 20 microM).  相似文献   

14.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

15.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

16.
B J Rao  B Jwang  M Dutreix 《Biochimie》1991,73(4):363-370
During the directional strand exchange that is promoted by RecA protein between linear duplex DNA and circular single-stranded DNA, a triple-stranded DNA intermediate was formed and persisted even after the completion of strand transfer followed by deproteinization. In the deproteinized three-stranded DNA complexes, the sequestered linear third strand resisted digestion by E coli exonuclease I. In relation to polarity of strand exchange which defines the proximal and distal ends of the duplex DNA, when homology was restricted to the distal region of duplex substrate, the joints formed efficiently and were stable even upon complete deproteinization. Enzymatic probing of deproteinized distal joints with nuclease P1 revealed that the joints consist of long three-stranded structures that at neutral pH lack significant single-stranded character in any of the three strands. Instead of circular single-stranded DNA, when a linear single strand is recombined with partially homologous duplex DNA, in the presence of SSB, the formation of homologous joints by RecA protein, is significantly more efficient at distal end than at the proximal. Taken together, these observations suggest that with any single-stranded DNA (circular or linear), RecA protein efficiently promotes the formation of distal joints, from which, however, authentic strand exchange may not occur. Moreover, these joints might represent an intermediate which is trapped into a stable triple stranded state.  相似文献   

17.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

18.
RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).  相似文献   

19.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

20.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号