首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On Day 3 of the estrous cycle (estrus = Day 0), dairy heifers were given either 10 mg i.m. FSH-P (FSH-P primed; n = 9) or a saline vehicle (saline primed; n = 9). On Day 10, all heifers were superovulated with FSH-P (total = 27.7 mg i.m.) in declining doses over 5 d. Heifers were inseminated artificially at estrus. From Day 2 until estrus, the number and size of follicles >2 mm were monitored daily by ultrasonography. The mean (+/- SEM) number of corpora lutea (CL) (6.2 +/- 1.5 vs 10.7 +/- 0.9; P<0.05) and the mean number of recovered embryos and unfertilized ova (3.6 +/- 1.7 vs 8.4 +/- 2.2; P<0.05) were lower in FSH-P-primed than in saline-primed heifers. Prior to initiation of superovulation, follicles >10 mm appeared on Days 6 to 7 in saline-primed heifers but only on Days 8 to 10 in FSH-P-primed heifers (P<0.05). Also, until Day 10, the mean number of follicles 4 to 6 mm and 7 to 10 mm was higher (P<0.05) in FSH-P-primed than in saline-primed heifers. After initiation of the superovulatory treatment (Day 10 to estrus), saline-primed heifers had a greater and faster increase in the mean number of follicles >10 mm (P<0.02) than FSH-P-primed heifers did. Depletion in the number of follicles 2 to 3 mm (P<0.001) between Day 10 and estrus and in the number of follicles 4 to 6 mm (P<0.05) between Day 12 and estrus occurred in both groups of heifers. Decreased superovulatory response and embryo recovery in FSH-P-primed heifers may have been due to the presence of large follicles (>10 mm) prior to the initiation of the superovulatory treatment which reduced the ability of small follicles to grow into larger size classes during superovulatory treatment.  相似文献   

2.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

3.
To understand the causes for poor response to superovulation in mature cows of high genetic potential, endocrine and follicular events during and after superovulation were compared in heifers (<2 yr old) yielding large numbers of embryos and cows (9 to 13 yr old) known to be poor embryo donors. Follicular development was monitored by daily ultrasonography. Blood samples were taken 2 to 3 times a day for the measurements of P4, E2, FSH and LH by RIA. Intensive blood collections at 15-min intervals for 6 h were also performed during preovulatory and luteal phases. The number of embryos produced in the heifers (15.2 +/- 2; mean +/- SEM) and the cows (0.6 +/- 0.4), was similar to the number of ovulatory follicles derived from ultrasonographic observations in the heifers (16.2 +/- 3.7), but not in the cows (7.8 +/- 2.8). Contrary to that observations in heifers, there was no increase in the number of 4- to 5-mm follicles in cows during superovulation. The number of larger follicles (>5 mm) increased during superovulation in both cattle groups, but it was significantly lower in cows than in heifers. During superovulation, the maximal E2 concentration was greater (P < 0.0001) in heifers than in cows. One cow showed delayed luteolysis during superovulation, while another had abnormally high FSH (>10 ng/ml) and LH (>3 ng/ml) concentrations following superovulation. All the cows had a postovulatory FSH rise which was not detected in the heifers. The results showed that attempts to improve superovulatory response in mature genetically valuable cows are hampered by a number of reproductive disorders that are not predictable from the study of the unstimulated cycle.  相似文献   

4.
An experiment was conducted to evaluate the role of the dominant follicle (DF) of the first wave in regulating follicular and ovulatory responses and embryonic yield to a superovulation regime with FSH-P. Twenty normally cycling Holstein-Freisian heifers (n = 20) were synchronized with GnRH and pgf(2alpha) and randomly assigned to a control or a treated group (n = 10 each). Treated heifers had the first wave dominant follicle removed via transvaginal, ultrasound-guided aspiration on Day 6 after a synchronized estrus. All heifers received a total of 32 mg FSH-P given in decreasing doses at 12 h intervals from Day 8 to Day 11 plus two injections of pgf(2alpha) (35 mg and 20 mg, respectively) on Day 10. Heifers were inseminated at 6 h and 16 h after onset of estrus. Follicular dynamics were examined daily by transrectal ultrasonography from Day 4 to estrus, once following ovulation, and at the time of embryo collection on Day 7. Blood samples were collected daily during the superovulatory treatment and at embryo collection. Follicles were classified as: small, /= 10 mm. Aspiration of the dominant follicle was associated with an immediate decrease in large follicles, and a linear rate increase in small follicles from Day 4 to Day 8 just prior to the FSH-P injections, (treatment > control: +0.33 vs. -0.22, number of small follicles per day; P < 0.10). During FSH-P injections, the increase in number of medium follicles was greater (P < 0.01) for treatment on Day 9-11 (treatment > control: Day 9, 3.2 > 1.8; Day 10, 9.2 > 4.7; Day 11, 13.1 > 8.3; +/- 0.56). Number of large follicles was greater in treatment at Day 11 (5.12 > 1.4 +/-0.21; P < 0.01). Mean number of induced ovulatory follicles (difference between number of follicles at estrus and Day 2 after estrus) was greater in treatment (13.4 > 6.3 +/- 1.82; P < 0.01). Plasma estradiol at Day 11 during FSH-P treatment was greater in treatment (32.5 > 15.8 +/- 2.6; P < 0.01). Plasma progesterone at embryo flushing (Day 7 after ovulation) was greater in treatment (7.4 > 4.9; P < 0.02); technical difficulties at embryo recovery reduced sensitivity of embryonic measurements. No changes in the distribution of unfertilized oocytes and embryo developmental stages were detected between control and treatment groups. Presence of dominant follicle of the first wave inhibited intraovarian follicular responses to exogenous FSH.  相似文献   

5.
It has been suggested that superovulation in cattle is impaired if FSH injections are initiated in the presence of a dominant follicle, but the results of experiments to test this hypothesis have been contradictory. However, previous experiments were conducted during mid-cycle, when the absence or presence of a dominant follicle is difficult to assess. We took a different approach by comparing the effects of initiating superovulatory injections of FSH (11 equal doses of FSH-P, every 12 h) on Day 1 of the bovine estrous cycle, when a dominant follicle clearly is not present, vs initiation on Day 6, when a dominant follicle clearly is present and actively growing (n = 17 heifers in a "crossover" design). In 8 17 heifers initiation of FSH injections in the presence of a dominant follicle (Day 6 group) caused ovulation of the dominant follicle within 1 to 2 days and formation of a smaller than normal CL. These animals had higher than normal concentrations of plasma progesterone around the time of expected estrus (P < 0.05) and failed to exhibit estrus. Although the mean number and diameter of the follicles recruited in response to FSH injections in heifers that ovulated the dominant follicle prematurely were not different from the other heifers in the Day 6 group, no ovulations were observed, and no embryos or ova were recovered 6 d after insemination. Conversely, when FSH injections were initiated on Day 1 in these 8 heifers, they exhibited estrus, and their plasma progesterone around the time of estrus, mean ovulation rate, and number of total and transferable embryos recovered did not differ from the responses observed in the remaining 9 heifers treated either on Day 1 or on Day 6. Taken together, these results indicate that a dominant follicle does not affect the ability of smaller follicles to be recruited in response to exogenous FSH, but may impair their ovulation. These findings provide an explanation for previous reports of decreased superovulatory responses during times of the cycle when a dominant follicle would be expected to be present.  相似文献   

6.
The concentrations of six steroids and of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in follicular fluid from preovulatory and large atretic follicles of normal Holstein heifers and from preovulatory follicles of heifers treated with a hormonal regimen that induces superovulation. Follicular fluid from preovulatory follicles of normal animals obtained prior to the LH surge contained extremely high concentrations of estradiol (1.1 +/- 0.06 micrograms/ml), with estrone concentrations about 20-fold less. Androstenedione was the predominant aromatizable androgen (278 +/- 44 ng/ml; testosterone = 150 +/- 39 ng/ml). Pregnenolone (40 +/- 3 ng/ml) was consistently higher than progesterone (25 +/- 3 ng/ml). In fluid obtained at 15 and 24 h after the onset of estrus, estradiol concentrations had declined 6- and 12-fold, respectively; androgen concentrations had decreased 10- to 20-fold; and progesterone concentrations were increased, whereas pregnenolone concentrations had declined. Concentrations of LH and FSH in these follicles were similar to plasma levels of these hormones before and after the gonadotropin surges. The most striking difference between mean steroid levels in large atretic follicles (greater than 1 cm in diameter) and preovulatory follicles obtained before the LH surge was that estradiol concentrations were about 150 times lower in atretic follicles. Atretic follicles also had much lower concentrations of LH and slightly lower concentrations of FSH than preovulatory follicles. Hormone concentrations in follicles obtained at 12 h after the onset of estrus from heifers primed for superovulation were similar to those observed in normal preovulatory follicles at estrus + 15 h, except that estrogen concentrations were about 6-40 times lower and there was more variability among animals for both steroid and gonadotropin concentrations. Variability in the concentrations of reproductive hormones in fluid from heifers primed for superovulation suggests that the variations in numbers of normal embryos obtained with this treatment may be due, at least in part, to abnormal follicular steroidogenesis.  相似文献   

7.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

8.
Ovarian follicular development was characterized in 24 Spanish Merino ewes to study effects of the follicular status and the FSH commercial product used on follicular growth and subsequent superovulatory response. Estrus was synchronized using 40 mg fluorogestone acetate sponges. The superovulatory treatment consisted in 2 daily i.m. injections of FSH from 48 h before to 12 h after sponge removal. Sheep were assigned randomly to 2 groups treated with 6 decreasing doses (4, 4, 3, 3, 2, 2 mg) of FSH-P or with 6 doses of 1.25 mL of OVAGEN. Growth and regression of all follicles > or = 2 mm were observed by transrectal ultrasonography, and recorded daily from Day 6 before sponge insertion to the first FSH injection, and then twice daily until estrus was detected with vasectomized rams. Differences were detected in follicular development from the first FSH injection to detection of estrus (-48 to 36 h from sponge removal) between groups. Administration of FSH-P increased the appearance of new follicles with respect to OVAGEN (6.3 +/- 0.7 vs 4.8 +/- 0.4; P < 0.05), and the mean number of medium (4 to 5 mm) follicles (8.9 +/- 1.2 vs 6.6 +/- 0.9; P < 0.05). However, the mean number of follicles that regressed in size after sponge removal (5.9 +/- 0.4 vs 3.3 +/- 0.4) and the number of preovulatory sized follicles that did not ovulate (60 vs 42.4%) were also higher in FSH-P treated ewes (P < 0.05). So, finally, there were no differences in ovulation rate, as determined by laparoscopy on Day 7 after sponge removal, between ewes treated with FSH-P or OVAGEN (6.3 +/- 1.9 vs 7.0 +/- 1.7 CL). In all the ewes, the ovulatory response was related (P < 0.05) both to the number of small follicles (2 to 3 mm in diameter) present in the ovaries at the start of treatment with exogenous FSH and to the number of follicles that reached > or = 4 mm in size at estrus, despite differences in the pattern of follicular development when using different commercial products.  相似文献   

9.
Ovulatory responses following FSH treatment were examined in beef heifers fed dietary fat supplements expected to produce differential effects on serum insulin concentrations and follicular recruitment patterns. Twenty-one heifers (n = 7/group) exhibiting regular estrous cycles were assigned randomly to either a control diet or to 1 of 2 fat-supplemented diets consisting of soybean oil (polyunsaturated fatty acids) or animal tallow (saturated fatty acids). The diets were formulated to be isoenergetic and isonitrogenous, and were fed until ovariectomy between experimental Days 35 and 45. Experimental Day 1 was defined for each heifer as the first day all of the treatment diet was consumed. After 20 d of diet consumption, estrous cycles were synchronized with prostaglandin F(2alpha) (PGF(2alpha)), and ovarian follicle populations were monitored via transrectal ultrasound for 4 d. Four days after estrus, the dominant follicle was aspirated and heifers were treated with FSH-P to induce superovulation. Ovulation rate was determined at ovariectomy 5 d after the superovulatory estrus (experimental Days 35 to 45). Both soybean oil and animal tallow diets increased (P < 0.05) the number of medium-sized follicles and increased (P < 0.02) serum concentrations of GH relative to the control diet. The soybean oil diet also increased (P < 0.001) serum concentrations of insulin on Days 14, 28, and 5 d after the superovulatory estrus. However, the number of ovulations following FSH treatment did not differ due to diet. Procedures employed in the current study were ineffective in recruiting the increased number of medium-sized follicles into the superovulatory pool.  相似文献   

10.
Mature Holstein heifers were given either a priming dose of follicle-stimulating hormone-pituitary (FSH-P, 10 mg) or saline on Day 2 of the estrous cycle, or no pretreatment. All animals were subsequently given a decreasing dose superovulatory treatment of FSH-P beginning between Days 8 and 14, coupled with an injection of prostaglandin F2a to induce luteolysis. Pretreatment with FSH-P had no effect on the total superovulatory response or on the number of transferable embryos collected at Day 7 of gestation. Comparison of the results of our study with previous reports in the literature may suggest that FSH-priming early in the cycle may be advantageous in promoting superovulation only when the superovulatory response of the population of animals is otherwise weak.  相似文献   

11.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

12.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

13.
The aim of this study was to determine, for goats, the effects of daily doses of GnRH antagonist on ovarian endocrine and follicular function. Ten does were given 45 mg FGA intravaginal sponges and then five were treated with daily injections of 0.5mg of the GnRH antagonist Teverelix for 11 days from 2 days after the day of sponge insertion, while five does acted as controls. Pituitary activity was monitored by measuring plasma FSH and LH daily from 2 days before the first GnRH injection to Day 12. Follicular activity was determined by ultrasonographic monitoring and by assessing plasma inhibin A levels during the same period. In treated does, the FSH levels decreased linearly (0.8 +/- 0.1 ng/ml to 0.5 +/- 0.1 ng/ml, P < 0.01) and remained lower than the mean concentration in control goats (0.8 +/- 0.1 ng/ml, P < 0.005). LH levels were also lower during the period of antagonist treatment (0.6 +/- 0.2 ng/ml versus 0.4 +/- 0.1 ng/ml, P < 0.0005). During GnRH antagonist treatment, there was a significant decrease in the number of large follicles (> or = 6 mm) from Day 3 of treatment (1.2 +/- 0.6, P < 0.0001), with no large follicles from Day 9. The number of medium follicles (4-5 mm in size) also decrease during the period of treatment (4.2 +/- 0.7 to 1.0 +/- 0.6, P < 0.0001), leading to a significant decrease in inhibin A levels when compared to the control (143.7 +/- 31.3 pg/ml versus 65.2 +/- 19.1 pg/ml, P < 0.00005). In contrast, the number of small follicles (2-3 mm) increased in treated goats from Day 4 of treatment (9.6 +/- 2.9 to 20.2 +/- 6.3, P < 0.005). Such data indicate that GnRH antagonist reduced plasma levels of FSH and LH with suppression of the growth of large dominant ovarian follicles and a two-fold increase in number of smaller follicles. The results confirm that GnRH antagonist treatment can be used in goats to control gonadotrophin secretion and ovarian follicle growth in superovulatory regimes.  相似文献   

14.
Taneja M  Singh G  Totey SM  Ali A 《Theriogenology》1995,44(4):581-597
The ovaries of 12 buffalo were examined daily by ultrasound beginning at Day 3 of the estrous cycle, followed by superovulation between Days 10 and 13 of the cycle. The buffalo were divided into 2 groups on the basis of the presence (dominant, n = 7) or absence (nondominant, n = 5) of a dominant follicle at the start of superovulation. Daily ultrasonographic observations of the ovaries were recorded on a videotape and were used to assess the progression of both the large (dominant) follicle and the next-to-the-large (subdominant) follicle as well as the numbers of follicles in the small (4 to 6 mm), medium (7 to 10 mm), and large (>10 mm) size categories, before and during the superovulation treatment. A greater number of small size (P < 0.05) follicles was available before the start of the superovulatory treatment in the buffalo superovulated in the absence of a dominant follicle. The turnover of follicles from medium to large size classes also occurred sooner (P < 0.01), and was of higher magnitude (P < 0.01) during treatment in buffalo of the nondominant follicle group. The number of corpora lutea at palpation per rectum was higher (P < 0.05) in buffalo of the nondominant than the dominant group (4.6 +/- 0.6 vs 2.7 +/- 0.5). However, there was no significant difference among the groups in the means of serum progesterone concentration (3.6 +/- 1.3 vs 2.2 +/- 0.6 ng/ml), total number of embryos (2.0 +/- 0.6 vs 1.1 +/- 0.7), transferable embryos (1.6 +/- 0.5 vs 1.0 +/- 0.6) and unfertilized ova recovered (0.4 +/- 0.2 vs 0) on Day 6. It is concluded that in buffalo, the superovulatory response could possibly be improved by ultrasongraphic observation of the status of follicular dominance prior to treatment.  相似文献   

15.
To examine endocrine and biochemical differences between dominant and subordinate follicles and how the dominant follicle affects the hypothalamic-pituitary-ovarian axis in Holstein cows, the ovary bearing the dominant follicle was unilaterally removed on Day 5 (n = 8), 8 (n = 8), or 12 (n = 8) of synchronized estrous cycles. Follicular development was followed daily by ultrasonography from the day of detected estrus (Day 0) until 5 days after ovariectomy. Aromatase activity and steroid concentrations in first-wave dominant and subordinate follicles were measured. Intact dominant and subordinate follicles were cultured in 4 ml Minimum Essential Medium supplemented with 100 microCi 3H-leucine to evaluate de novo protein synthesis. Five days after unilateral ovariectomy, cows were resynchronized and the experiment was repeated. Follicular growth was characterized by the development of single large dominant follicles, which was associated with suppression of other follicles. Concentrations of estradiol-17 beta (E2) in follicular fluid and aromatase activity of follicular walls were higher in dominant follicles (438.9 +/- 45.5 ng/ml; 875.4 +/- 68.2 pg E2/follicle) compared to subordinate follicles (40.6 +/- 69.4 ng/ml; 99.4 +/- 104.2 pg E2/follicle). Aromatase activity in first-wave dominant follicles was higher at Days 5 (1147.1 +/- 118.1 pg E2/follicle) and 8 (1028.2 +/- 118.1 pg E2/follicle) compared to Day 12 (450.7 +/- 118.1 pg E2/follicle). Concentrations of E2 and androstenedione in first-wave dominant follicles were higher at Day 5 (983.2 +/- 78.2 and 89.5 +/- 15.7 ng/ml) compared to Days 8 (225.1 +/- 78.6 and 5.9 +/- 14.8 ng/ml) and 12 (108.5 +/- 78.6 and 13.0 +/- 14.8 ng/ml). Concentrations of progesterone in subordinate follicles increased linearly between Days 5 and 12 of the estrous cycle. Plasma concentrations of FSH increased from 17.9 +/- 1.4 to 32.5 +/- 1.4 ng/ml between 0 and 32 h following unilateral removal of the ovary with the first-wave dominant follicle. Increases in plasma FSH were associated with increased numbers of class 1 (3-4 mm) follicles in cows that were ovariectomized at Day 5 or 8 of the cycle. Unilateral ovariectomy had no effects on plasma concentrations of LH when a CL was present on the remaining ovary. First-wave dominant follicles incorporated more 3H-leucine into macromolecules and secreted high (90,000-120,000) and low (20,000-23,000) molecular weight proteins that were not as evident for subordinate follicles at Days 8 and 12.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of follicular and/or endocrine environments on superovulatory response was tested. Eighteen nonlactating Holstein cows were superovulated with 32 mg FSH-P given in decreasing doses at 12-h intervals plus two injections of prostaglandin F2-alpha (25 mg each) on the third day of treatment. Cows were assigned randomly to treatments: T1, superovulatory treatment initiated on estrous cycle Day 10.5; T2, CIDR (intravaginal device containing 1.9 g of progesterone) inserted from Days 3 to 9 and superovulation initiated on Day 6.5; T3, identical to T2 but Buserelin (GnRH agonist) was injected (8 mug, i.m.) on Day 3 at the time of CIDR insertion. Embryos were recovered on Day 7 after the superovulatory estrus. Cows were examined daily by ultrasonography and blood was collected for progesterone and estradiol determinations. Mean diameter of the dominant follicle (frequency of first-wave dominant follicle) at the beginning of FSH injections was 13.7 mm (4 6 ), 11.2 mm (6 6 ) and 8.7 mm (6 6 ) (P<0.01) for T1, T2 and T3, respectively. Following initiation of superovulation, follicles moved into larger follicle classes (Class I, <3 mm; Class II, 3 to 4 mm; Class III, 5 to 9 mm; Class IV >9 mm) earliest in T1 (P<0.01). Cumulative follicular diameter and plasma concentrations of estradiol at Day 4 of superovulation were higher (P<0.01) in T1 (200 mm, 82 pg/ml) compared with T2 (123 mm, 24 pg/ml) and T3 (130 mm, 18 pg/ml). Proportion of cows in estrus prior to 12 h vs 12 to 24 h differed (P<0.05) between groups (T1: 5 vs 1; T2: 2 vs 4; T3: 1 vs 5). Mean number of follicles on the last day of superovulation treatment, number of CL and number of embryos plus unfertilized ova recovered were 17.5, 12.2 and 13.3; 13.8, 10 and 8.2 (P<0.1) and 8.7, 4.5 and 2.3 (P<0.05) for T1, T2 and T3, respectively. The developmental stage of the dominant follicle was associated with not only the number of ovulations, but also the size and periestrous concentrations of plasma estradiol associated with the recruited follicles.  相似文献   

17.
The aim of this study was to determine if initiation of superovulation in heifers during the time of development of the first dominant follicle (Days 2 to 6) would give equivalent ovulation and embryo production rates as treatment initiated at mid-cycle. Estrus was synchronized in 60 beef heifers using luprostiol (PG) and they were randomly allocated to treatment with 4.5, 3.5, 2.5 and 1.5 mg of porcine follicle stimulating hormone (FSH) administered twice daily, either on Days 2, 4, 5 and 6 (Day-2 group), respectively, or with similar doses at four consecutive days during mid-cycle (Day-10 group, initiation on Day 9 to 11). All heifers received 500 mug cloprostenol at the fifth FSH injection and 250 mug at the sixth injection. Blood samples for progesterone determination were collected at the time of FSH injections. Heifers were slaughtered 7 d post estrus, and the number of ovulations and large follicles (>/=10mm) were determined on visual inspection of the ovary. Following flushing of the uterine horns the quality of embryos and the fertilization rate were determined. Significant differences between treatments were determined using a two-sided t-test, and frequency distributions were compared using Chi-square tests. The mean number (+/-SEM) of ovulations for heifers in the Day-10 group was 12.9+/-1.0, and 8.5+/-0.9 embryos were recovered. Both the number of ovulations (6.7+/-0.8) and embryos recovered (4.1+/-0.6) were lower (P=0.0001) in heifers in the Day-2 group. Following grading based on a morphological basis, a higher number (P=0.002) of embryos was categorized as Grades 1 and 2 (4.1+/-0.6) and Grade 3 (2.1+/-0.4) in Day-10 heifers than in the Day-2 group (Grade 1 and 2, 1.9+/-0.3; Grade 3, 0.7+/-0.2). The number of Grade 4 and 5 embryos (Day 10, 1.6+/-0.2; Day 2, 1.4+/-0.2) and the number of unfertilized ova (Day 10, 0.7+/-0.4; Day 2, 0.2+/-0.1) did not differ between treatments. Progesterone concentrations were lower (P=0.0001) in Day-2 heifers at FSH treatment prior to prostaglandin, and the decline was more rapid following prostaglandin injection at Day 5 (P=0.02). Results of this study indicate that the number of ovulations and embryos recovered was lower in heifers when FSH treatment was initiated on Day 2 compared with Day 10 of the estrous cycle.  相似文献   

18.
One of the primary limiting factors to superovulation and embryo transfer in cattle has been the large variability in response, both between and within animals. It appears that the primary source of this problem is the variability in the population of gonadotropin-responsive follicles present in ovaries at the time of stimulation. We have shown that treatment of heifers with recombinant bovine somatotropin (rbGH) increases the number of small antral follicles (2 to 5 mm) and, therefore, enhances the subsequent superovulatory response to eCG. To investigate further the potential of using this approach to improve superovulatory regimens in cattle, the effect of rbGH pretreatment on the response to pituitary FSH was studied. The estrous cycles of 16 heifers were synchronized using PGF2alpha. On Day 7 of the synchronized cycle, half of the animals were injected with 320 mg sustained-release formulated rbGH, while the other half received 10 ml saline. Five days later, all heifers were given a decreasing-dose regimen of twice daily injections of oFSH for 4 d, incorporating an injection of PGF2alpha with the fifth FSH treatment, to induce superovulation. All animals were artificially inseminated twice with semen from the same bull during estrus. Ova/embryos were recovered nonsurgically on Days 6 to 8 of the following estrous cycle, and the ovulation rate assessed on Day 9 by laparoscopy. Using the same animals as described above, the experiment was repeated twice, 3 and 6 mo later, with no laparoscopy in the third experiment. The animals were randomized both between experiments and for the day of ova/embryo collection. Pretreatment of heifers with rbGH significantly (P < 0.01) increased the number of ovulations, total number of ova/embryos recovered and the number of transferable embryos. The percentage of transferable embryos was significantly (P < 0.05) increased by rbGH pretreatment. In addition, the incidence (2/16) of follicular cysts with a poor ovulatory response (< 6 ovulations) for the rbGH-pretreated heifers was significantly lower (P < 0.05) when compared with the incidence (7/16) in the control animals. It is concluded that pretreatment with rbGH may provide a useful approach for improving superovulatory response in cattle.  相似文献   

19.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

20.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号