首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies indicate that the influence of environmental factors on growth rate and size and age at maturity in sailfin mollies (Poecilia latipinna) is inconsistent over time and suggest that the marked interdemic variation in male body size in this species is the result of genetic variation. However, the role of specific environmental factors in generating phenotypic variation must be studied under controlled conditions unattainable in nature. We raised newborn sailfin mollies from four populations in laboratory aquaria under all possible combinations of two temperatures, three salinities, and two food levels to examine explicitly the influence of these environmental factors. Males were much less susceptible than females to temperature variation and were generally less plastic than females in terms of all three traits. Members of both sexes matured at larger sizes and at later ages in less saline and in cooler environments. Food levels were not sufficiently different to affect the traits we studied. The effects of temperature and salinity were not synergistic. Males from different populations exhibited different average ages and sizes at maturity, but females did not. The magnitudes of the effects we found were not substantial enough to account for the consistent interdemic differences in male and female body size that have been observed previously. Our results also indicate that no single environmental factor is solely responsible for the environmental effects observed in field experiments on growth and development. These studies, together with other work, indicate that the strongest sources of interdemic variation are genetic differences in males and differences in postmaturation growth and survivorship in females.  相似文献   

2.
We performed a common garden experiment to assess the existence of genetic differences on growth and body size between two populations of Poecilia vivipara inhabiting extremes of an environmental gradient caused by water salinity in lagoons of Northern Rio de Janeiro State, Brazil: the Campelo lagoon (freshwater) and Açu lagoon (brackish/saltwater). The two populations show extreme differences in average phenotypes for body size, shape and life history (freshwater populations with smaller body size, lower fecundity and larger reproductive allotment). Pregnant females were brought to the lab and the offspring from both groups were kept in a common recirculating system with freshwater. Standard length and survival were measured weekly over a period of 200 days and growth models were fitted and selected with information criteria. The offspring originally from the brackish water lagoon presented larger asymptotic length, higher maximum growth rate but lower survival than the offspring originally from the freshwater lagoon. Potential confounding variables such as density differences due to mortality and maternal effects (offspring size) were included as covariates in comparisons of growth rates between groups. The results are consistent with phenotypic differences among populations having some genetic basis, and with the existence of a trade-off between growth and maintenance due to the high growth/low survival observed in the group that changed from salt to freshwater. Comparisons of captive and natural populations suggest that the influence of environmental factors, such as salinity, food availability, fish density and predation should also be considered relevant to explain phenotypic variation in this system.  相似文献   

3.
An anadromous population (trachurus form) and three freshwater populations (leiurus form) of the three-spined stickleback,Gasterosteus aculeatus, in central Japan were compared with one another in the reproductive traits: body length at maturity, egg size, clutch size, the swell of abdomen and the number of eggs per nest. The anadromous fish which become larger in body size at maturity spawn eggs smaller in size and greater in number than the freshwater fish. The abdomen swell of gravid females expressed by the proportion of abdomen width to body length was greater in the freshwater fish. The anadromous male fish collected a mean of 2,638 eggs with a range of 1,119 to 4,052 eggs from about 6–7 females. In the three freshwater (the Yamayoke, the Tsuya and the Jizo) populations, males must have mated with about 9–22, 7–18 and 4–7 females respectively. It seems that theleiurus form increases its reproductive success by its much more mating opportunities and the parental efforts of nesting males as well as by spawning large eggs. Furthermore, among the freshwater populations, the Jizo one inhabiting the upper stream was clearly larger in body size, in egg size and in clutch size than the Yamayoke and the Tsuya ones which inhabit stable waterbodies with springs. It is possible that the Jizo population adopted the strategy of spawning a few large eggs as an adaptation to its habitat. The causal and functional explanations in reproductive characteristics among the four populations are discussed in regard to differences in the environmental conditions.  相似文献   

4.
Variation in age and size of mature nine-spined sticklebacks (Pungitius pungitius) within and among 16 Fennoscandian populations were assessed using skeletochronology. The average age of individuals in a given population varied from 1.7 to 4.7 years. Fish from pond populations were on average older than those from lake and marine populations, and females tended to be older than males. Reproduction in marine and lake populations commenced typically at an age of two years, whereas that in ponds at an age of three years. The maximum life span of the fish varied from 3 to 7 years. Mean body size within and among populations increased with increasing age, but the habitat and population differences in body size persisted even after accounting for variation in population age (and sex) structure. Hence, the population differences in mean body size are not explainable by age differences alone. As such, much of the pronounced intraspecific variation in population age structure can be attributed to delayed maturation and extended longevity of the pond fish. The results are contrasted and discussed in the context of similar data from the three-spined stickleback (Gasterosteus aculeatus) occupying the same geographic area.  相似文献   

5.
Gigantism in isolated ponds in the absence of sympatric fish species has previously been observed in nine-spined sticklebacks (Pungitius pungitius). Patterns in sexual size dimorphism suggested that fecundity selection acting on females might be responsible for the phenomenon. However, the growth strategy behind gigantism in pond sticklebacks has not been studied yet. Here, we compared von Bertalanffy growth parameters of four independent nine-spined stickleback populations reared in a common laboratory environment: two coastal marine (typical size) and two pond (giant size) populations. We found that both pond populations had larger estimated final size than marine populations, which in turn exhibited higher intrinsic growth rates than the pond populations. Female growth strategies were more divergent among marine and pond populations than those of males. Asymptotic body size and intrinsic growth rate were strongly negatively correlated. Hence, pond versus marine populations exhibited different growth strategies along a continuum. Our data suggest that quick maturation—even with the cost of being small (low fecundity)—is favoured in marine environments. On the contrary, growth to a giant final size (high fecundity)—even if it entails extended growth period—is favoured in ponds. We suggest that the absence (ponds) versus presence (marine environment) of sympatric predatory fish species, and the consequent change in the importance of intraspecific competition are responsible for the divergence in growth strategies. The sex-dependence of the patterns further emphasizes the role of females in the body size divergence in the species. Possible alternative hypotheses are also discussed.  相似文献   

6.
Organisms experience multiple selective agents that can influence phenotypes through heritable and/or plastic changes, often reflecting complex interactions between phenotype and environment. Environmental factors can directly influence phenotypes, but also indirectly affect phenotypic variation when genetic/plastic change in one trait results in correlated genetic/plastic change in another trait. In fishes, body shape is a trait that might be particularly prone to influence from environmental pressures that act on other morphological features. Variation in dissolved oxygen among aquatic environments has a large impact on the size of the gills and brains of fishes. It is likely that dissolved oxygen interacts with other environmental factors to both directly and indirectly influence patterns of body shape variation. We examined effects of dissolved oxygen on body shape variation among populations of an African cichlid fish (Pseudocrenilabrus multicolor) from multiple high- and low-oxygen sites within a single drainage in Uganda. A split-brood laboratory experiment was used to estimate plasticity of gill and brain size, and we used morphometric analyses to identify variation in body shape in F1 offspring. Several analyses enabled us to identify genetic effects among populations, and effects of oxygen acting either directly on body shape or indirectly through its effects on gill and brain size. A large part of the variation in body shape was due to plastic variation in gill size associated with dissolved oxygen. Fish raised under low oxygen had deeper heads and shorter bodies, and this variation was driven by both direct effects of oxygen and indirect effects of gill size variation. Body shape variation in fishes should reflect interacting effects of multiple environmental factors that act directly or indirectly on morphology. Body shape might be particularly difficult to predict when phenotypes are plastic, because changes among populations would occur rapidly and be unrelated to genetic variation.  相似文献   

7.
I document a genetic basis for parallel evolution of life-history phenotypes in the livebearing fish Brachyrhaphis rhabdophora from northwestern Costa Rica. In previous work, I showed that populations of B. rhabdophora that co-occur with predators attain maturity at smaller sizes than populations that live in predator-free environments. I also demonstrated that this pattern of phenotypic divergence in life histories was independently repeated in at least five isolated drainages. However, life-history phenotypes measured from wild-caught fish could be attributed to environmental effects rather than to genetic differences among populations. In the present study, I reared male fish from four populations (two that co-occur with predators and two from predator-free environments) under four sets of environmental conditions. The pattern of phenotypic divergence in maturation size documented in the field between populations collected from different predation environments persisted after two generations in the laboratory. I also found a genetic basis for differences between populations in the age at which males attain maturity and in growth rates. By rearing fish in four different common environments, I tested for phenotypic plasticity in male life-history traits in response to nonlethal exposure to predators. There was a significant delay in the onset of sexual maturity in fish exposed to predators relative to those in the control, but no differences among treatments in size at maturity or growth rates. These results, coupled with previous work on B. rhabdophora, demonstrate a repeated pattern of parallel evolutionary divergence among genetically isolated populations that is strongly associated with predation.  相似文献   

8.
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale.  相似文献   

9.
M. G. McManus  J. Travis 《Oecologia》1998,114(3):317-325
While the life history traits of animals usually exhibit substantial phenotypic plasticity, such plasticity might reflect either a simple alteration in the level of energy accrual and use or a genuine shift in energy allocation tactics between environmental conditions. The latter would represent genuine plasticity in the life history itself, and thus it is important to distinguish which of these two processes underlies the observed plasticity of life history traits. We investigated this issue by examining the effects of temperature and salinity variation during ontogeny on the allocation of biomass and lipid storage in male sailfin mollies, Poecilia latipinna. We raised males from four natural populations from birth to maturity in controlled laboratory conditions. Neither distinct temperatures (23 or 29°C) nor different salinity regimes (2, 12, or 20 parts per thousand) affected body mass, although males from different populations differed substantially in body mass. However, males raised at the higher temperature had a greater allocation of biomass to testis and a lower allocation to viscera mass. The amount of stored lipid was altered by temperature variation but the direction and magnitude of the effect varied substantially among males from the different populations. Salinity variation affected neither biomass allocation nor the level of lipid storage. These results indicate that male mollies possess a flexible developmental program with respect to temperature that canalizes body size and alters the allocation of biomass among competing demands for reproductive readiness and capacity for energy storage. Received: 25 November 1996 / Accepted: 1 December 1997  相似文献   

10.
In species with indeterminate growth, differential growth rates can lead to animals adopting alternative reproductive tactics such as sneak–guard phenotypes, which is partially predicted by variation in growth during the juvenile life‐history stage. To investigate sources of growth variation, we examined the independent and joint effects of paternal reproductive tactic (G) and rearing environment (E) on juvenile growth in Chinook salmon (Oncorhynchus tshawytscha), hypothesizing G and E effects are partially mediated through differences in behaviour such as aggressive interactions and resulting foraging behaviours. We created maternal half‐sibling families with one‐half of the female's eggs fertilized by the milt of a sneaker “jack” and the other half by a guarder “hooknose”. At the exogenous feeding stage, each split‐clutch family was then divided again and reared in a rationed diet or growth‐promotion diet environment for approximately 6 months, during which growth parameters were measured. Before saltwater transfer at 9 months of age, social interactions were observed in groups of six fish of various competitor origins. We found ration restricts growth rate and juvenile mass, and evidence of genetic effects on growth depensation, where jack‐sired individuals grew less uniformly over time. These growth‐related differences influenced an individual's level of aggression, with individuals raised on a restricted diet and those whose families experienced greatest growth being most aggressive. These individuals were more likely to feed than not and feed most often. Jack‐sired individuals were additionally aggressive in the absence of food, and when raised on a rationed diet outcompeted others to feed most. These results show how individuals may achieve higher growth rates via intrinsic (G) or induced (E) aggressive behavioural phenotypes, and eventually attain the threshold body size necessary during the saltwater phase to precociously sexually mature and adopt alternative reproductive phenotypes.  相似文献   

11.
Synopsis Freshwater and marine threespine stickleback, Gasterosteus aculeatus, differ remarkably in armour plate number and body shape, although differences in other morphological characters are also common. Most freshwater populations have apparently evolved after isolation of marine sticklebacks in freshwater. After colonisation of freshwater habitats, they show rapid morphological changes and associated genetic isolation within as few as eight generations. I transferred fish from marine tide pools to two isolated freshwater ponds, differing in habitat characteristics, at the beginning of the breeding season, when females had ripe ovaries and males had breeding coloration. The first generation fish that I sampled from the ponds had significantly fewer armour plates than their marine ancestors and differed in shape. I also found some significant differences between fish sampled from the larger pond and those from a smaller, adjacent pond. This extremely rapid morphological divergence suggests that either the marine sticklebacks were highly phenotypically plastic or that there was very strong natural selection acting on the first generation within freshwater habitats.  相似文献   

12.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

13.
1.?Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2.?Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3.?We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4.?The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex.  相似文献   

14.
We quantified genetic variation for ecological relevant traits in the presence and the absence of fish chemicals of eleven Daphnia ambigua clones that were isolated from six interconnected ponds that differed in water transparency. In a cohort life table experiment, we tested whether genetic variation for a set of key life history traits was present among these clones. In addition the phototactic behaviour of these clones cultured in the presence and the absence of fish kairomones was quantified using a biotest. We detected a significant effect of fish kairomones on the phototactic behaviour and a highly significant genetic variation among clones for this trait in D. ambigua clones isolated from ponds in De Maten. Differences in size at maturity among D. ambigua clones in De Maten were highly significant, whereas differences in spina length among D. ambigua clones in De Maten were not significant. The presence of fish chemicals did not affect the studied life-history traits. We observed a significant positive relationship between average phototactic behaviour for each population and size at maturity both in the presence as in the absence of fish kairomones. Most of the genetic differences could be attributed to a clone isolated from one clearwater pond that is not directly connected to the remainder of the pond complex.  相似文献   

15.
The conditions leading to gigantism in nine‐spined sticklebacks Pungitius pungitius were analysed by modelling fish growth with the von Bertalanffy model searching for the optimal strategy when the model's growth constant and asymptotic fish size parameters are negatively related to each other. Predator‐related mortality was modelled through the increased risk of death during active foraging. The model was parameterized with empirical growth data of fish from four different populations and analysed for optimal growth strategy at different mortality levels. The growth constant and asymptotic fish size were negatively related in most populations. Optimal fish size, fitness and life span decreased with predator‐induced mortality. At low mortality, the fitness of pond populations was higher than that of sea populations. The differences disappeared at intermediate mortalities, and sea populations had slightly higher fitness at extremely high mortalities. In the scenario where all populations mature at the same age, the pond populations perform better at low mortalities and the sea populations at high mortalities. It is concluded that a trade‐off between growth constant and asymptotic fish size, together with different mortality rates, can explain a significant proportion of body size differentiation between populations. In the present case, it is a sufficient explanation of gigantism in pond P. pungitius.  相似文献   

16.
Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.  相似文献   

17.
Comparisons within and among populations offer important insights into variation in life-history traits and possible adaptive patterns to environmental conditions. We present the results of observed differences in body size, body shape and patterns of reproduction in four separate populations of the European pond turtle Emys orbicularis in central and southern Italy – coastal ( n =3) and mountainous ( n =1) sites and pond ( n =2) and canal ( n= 2) habitats – to determine whether phenotypic plasticity affects reproductive output. Although we did not find any significant latitudinal variation in body size, we observed significant differences in body shape between canal (rounded body shape) and pond (elongated body shape) systems and smaller size with rounded shape in the mountainous population. Reproductive output is similar among populations (median=5 eggs per clutch), whereas reproductive investment (relative clutch mass to maternal body mass) is higher in the mountain population (one clutch per year) than in coastal populations (two clutches per year), suggesting differential trade-offs between geographic locality, elevation and habitat type. Turtle shell shape and geographic location together affect reproductive output in E. orbicularis in Italy.  相似文献   

18.
Reproductive tactics and migratory strategies in Pacific and Atlantic salmonines are inextricably linked through the effects of migration (or lack thereof) on age and size at maturity. In this review, we focus on the ecological and evolutionary patterns of freshwater maturation in salmonines, a key process resulting in the diversification of their life histories. We demonstrate that the energetics of maturation and reproduction provides a unifying theme for understanding both the proximate and ultimate causes of variation in reproductive schedules among species, populations, and the sexes. We use probabilistic maturation reaction norms to illustrate how variation in individual condition, in terms of body size, growth rate, and lipid storage, influences the timing of maturation. This useful framework integrates both genetic and environmental contributions to conditional strategies for maturation and, in doing so, demonstrates how flexible life histories can be both heritable and subject to strong environmental influences. We review evidence that the propensity for freshwater maturation in partially anadromous species is predictable across environmental gradients at geographic and local spatial scales. We note that growth is commonly associated with the propensity for freshwater maturation, but that life-history responses to changes in growth caused by temperature may be strikingly different than changes caused by differences in food availability. We conclude by exploring how contemporary management actions can constrain or promote the diversity of maturation phenotypes in Pacific and Atlantic salmonines and caution against underestimating the role of freshwater maturing forms in maintaining the resiliency of these iconic species.  相似文献   

19.
The Chitty hypothesis proposes that the demographic changes occurring in microtine cycles are mediated by natural selection operating on the genetic composition of the population. Implicit in this hypothesis is the assumption that a suite of life-history traits is simultaneously undergoing selection and that these traits are strongly heritable. We tested this in two ways: first, by determining whether the year-to-year differences in phenotypes in fluctuating meadow vole populations in the field are maintained in samples of young animals raised in the laboratory, and second, whether the variation seen in the field has a heritable basis as determined by half-sib analysis. Parents were obtained in the springs of successive years from a fluctuating meadow vole population. These animals were bred in small field enclosures, and their progeny were raised in the laboratory. Animals raised in the laboratory differed significantly from those in the natural field population. In the field, young from the year when population size was increasing grew more rapidly than those from the peak year; in the laboratory, the opposite occurred. The ages at sexual maturity showed similar differences. Heritability analysis was performed on body weight, growth rate, and age and weight at sexual maturity. Virtually all these traits showed significant dam effects, but small or nonexistant sire effects. Thus, most of the variation was nongenetic in origin; maternal and other environmental effects were of overriding importance. We conclude that the heritabilities of these traits in nature are usually lower than necessary for natural selection to operate in the time frames characteristic of microtine cycles.  相似文献   

20.
Abstract.— Using data from three years (1994–1996), I tested whether differential migration occurs from demes of high mean fitness in the shining fungus beetle, Phalacrus substriatus . The results show evidence for differential migration, thus providing evidence from a natural population for a critical demographic assumption of many interdemic selection models. To predict the evolutionary response to interdemic selection through differential migration, the genetic basis of the variation among demes in mean fitness must be known because the observed patterns could also be explained by some demes having an intrinsically favorable habitat. Thus, the importance of differential migration through interdemic selection in natural populations cannot be unequivocally answered without experiments specifically addressing the question of what causes differences in mean fitness among demes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号