首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

2.
  • Some chewing larvae are capable of inducing galls in the host vascular cylinder, e.g. Dasineura sp. (Cecidomyiidae) on Peumus boldus stems. Due to the medicinal and economic importance of P. boldus, the anatomical and functional implications of establishment of Dasineura sp. on P. boldus stems were investigated. We asked if establishment of Dasineura sp. in P. boldus stems induces abnormalities at the cellular and organizational level of the vascular system that increase during gall development in favour of the hydric status of the gall.
  • Anatomical alterations induced in the stems during gall development were determined. Cytohistometric analyses in mature galls were compared to non-galled stems, and water potential and leaf area of non-galled stems were compared with galled stems.
  • Dasineura sp. establishes in the vascular cambium, leading to delignification and rupture of xylem cells, inhibiting formation of phloem and perivascular sclerenchyma. Gall diameter increases together with larval feeding activity, producing a large larval chamber and numerous layers of nutritive tissue, vascular parenchyma, and sclerenchyma. These anatomical alterations do not affect the leaf area of galled stems but favour increased water flow towards these stems.
  • The anatomical alterations induced by Dasineura sp. in P. boldus stems guarantee water and nutrient supply to the gall and larva. After the inducer exits stems, some host branches no longer have vascular connections with the plant body.
  相似文献   

3.
ABSTRACT.
  • 1 Depressaria multifidae Clarke feeds on a broader variety of Umbelliferae plant parts than other Depressaria species.
  • 2 Early instar larvae feed in the sheaths surrounding floral buds and leaves. Later instar larvae feed in the sheaths and floral stems and on flowers and leaves.
  • 3 Floral stems bored by larvae had significantly larger basal stem diameters than floral stems that were not bored. Smaller stems usually have umbels with only male flowers, and wither after flowering, too soon for larvae to complete development. In contrast, larger stems often have umbels with some hermaphroditic flowers, which remain green and erect long enough for larvae to complete development. Hence, selection may favour larvae that bore only in relatively large stems.
  • 4 In the laboratory, larvae fed sheaths with enclosed floral buds, flowers, or leaves all pupated at the same weight, but larvae fed floral stems pupated at a significantly lower weight. Larval and pupal development time was the same on all plant parts.
  • 5 In the field, larvae restricted to a single umbel throughout development pupated at the same weight as those restricted to a single leaf.
  • 6 Unlike in other Depressaria species, nitrogen levels only partly correspond to the pattern of use of plant parts in D.multifidae. Nitrogen values varied as follows: floral buds > immature leaves ≥ flowers > floral stalks > sheaths excluding floral buds or leaves.
  • 7 The broad variety of plant parts used by D.multifidae may result partly from the problem of feeding on a small, seasonally restricted hostplant; the greater use of sheaths and floral stems than in other Depressaria species may result from selection for safety from parasites or predators.
  • 8 The results for D.multifidae indicate that the way in which an insect feeds on a plant species can vary broadly even at a single site.
  相似文献   

4.
5.
  • Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem.
  • Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea – two dominant species of important ecological and economic value in the saline ecosystem.
  • Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends.
  • These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems.
  相似文献   

6.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

7.
  • The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity.
  • We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions.
  • Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season.
  • We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.
  相似文献   

8.
  • Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation.
  • We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole‐plant photosynthesis, and ultimately in aboveground biomass.
  • Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole‐plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant‐level C gain, and ultimately to larger aboveground biomass.
  • In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf‐level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
  相似文献   

9.
10.
11.
  • Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption.
  • We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance.
  • Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials.
  • Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
  相似文献   

12.
Wetland indicator status (WIS ) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species‐level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species‐level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA ), stem specific gravity (SSG ), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species‐level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG , seed mass, % leaf carbon and height, and for woody species occurred for height, SSG , and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low‐density stem tissue. Adaptations to drier habitats in the riparian zone include short, high‐density cavitation‐resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.  相似文献   

13.
An analysis of the relationships between plant size and survivorship and reproductive success was carried out by sampling four populations of the herbaceous perennial milkweed Asclepias exaltata in Virginia from 1980 to 1982. The annual survivorship rate (about 65%) is the lowest measured for any species of Asclepias. Survivorship was strongly size-dependent but showed no clear relationship with previous history of fruit production. Non-flowering plants were significantly smaller than flowering plants and showed very strong (r > 0.87) correlations between root dry weight and stem or leaf dry weight. Flowering plants were similar to nonflowering plants in root: shoot ratio (approximately 1:1) but differed in that root dry weight was not strongly correlated with stem or leaf dry weight. Components of inflorescence size were strongly correlated within a given level of comparison (e.g., stems per plant with flowers per plant) but less strongly correlated between levels (e.g., stems per plant with flowers per stem). Number of fruits per plant and percentage fruit-set were positively correlated with every component of inflorescence size. Although overall fruit-set was low (about 2%), fruits that were initiated had a high probability of surviving to maturity. There was no evidence of an early period of high fruit abortion: a relatively constant proportion of fruits aborted between each age class.  相似文献   

14.
  • Trade-offs exist for xerophytic shrubs between functional traits, involving in water loss and assimilate accumulation, can contribute to its survival and growth rate regulation in arid environments. However, growth analysis based on plant functional traits has been focused on the study of herbs and woody species. It is still unclear how the functional traits of xerophytic shrubs regulate their growth rate.
  • In this study, we selectedeight xerophytic shrubs as samples to analyze the regulation process of the functional traits of shrubs on growth rate. Plants were cultivated for three years, and three harvests (every one year) were carried out. Factors explaining between-species differences in relative growth rate (RGR) varied, depending on whether different ages were considered.
  • The results showed that RGR was positively correlated with net assimilation rate, but there was a significant negative correlation with leaf area ration (LAR), specific leaf area (SLA), and leaf biomass ratio in the age 1. However, in the age 2, RGR showed a significant positive correlation with the morphological traits (i.e., leaf area ration and specific leaf area), but not with physiological traits (i.e., net assimilation rate) and leaf biomass allocation.
  • Our results suggested that the fluctuation of environmental factors affects the regulation path of the plant functional traits on RGR of xerophytic shrubs. However, the analysis of causality model showed that no matter in which age, net assimilation rate and leaf area ration principally drive the variation in RGR among xerophytic shrubs.
  相似文献   

15.
  • Environmental cadmium (Cd) sources have increased in mangrove sediments in recent decades, inducing cellular damage to many plants. Avicennia schaueriana is abundant in mangrove sites and has been subject to Cd contamination. The possible effects of Cd toxicity and the structural and physiological disturbances to this plant were studied. Can this plant express early cellular tolerance mechanisms to such metal contamination?
  • Seedlings of A. schaueriana were collected from sites of their natural occurrence, placed in plastic pots containing nutrient solution for 60 days, and subsequently exposed to increasing Cd concentrations for 5 days under experimental conditions. The anatomical, ultrastructural and physiological changes induced by Cd were analysed.
  • Cd accumulated mainly in the root system and in pneumatophores, stems and leaves, induced differential accumulation of mineral nutrients, but did not induce necrosis or changes in leaf anatomy. However, there was a decrease in starch grains and an increase in deposited electron‐dense material in the cortex and vascular bundles. Cd induced both increases in calcium (Ca) content in shoots and Ca oxalate crystal precipitation in leaf mesophyll and was detected in crystals and in the secretion of salt glands.
  • Our observations and experimental results provide evidence of Cd tolerance in A. schaueriana. As a new feature, despite the clear cellular physiological disorders, this plant is able to eliminate Cd through leaf salt glands and immobilise it in Ca crystals, representing fast mechanisms for Cd exclusion and complexation in leaves in heavy metal coastal polluted marine ecosystems.
  相似文献   

16.
  • Functional traits respond to environmental drivers, hence evaluating trait‐environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global‐change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities.
  • We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global‐change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in‐situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality).
  • Among the global‐change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species.
  • Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global‐change drivers for community trait variation.
  相似文献   

17.
  • Large amounts of heavy metals have been released into the environment. Thus, the allelopathic effects of invasive alien species on the germination performance of co-occurring indigenous species may be altered or even heightened with the rapid growth in heavy metal pollution.
  • This study evaluated the impacts of Canada goldenrod (Solidago canadensis L.) leaf extracts at concentrations of 0, 10 or 20 gl 1 on the germination of lettuce under different forms of heavy metal pollution (Cu2+, Pb2+ or a combination of Cu2+ and Pb2+; 35 mgl 1) during incubation in Petri dishes for 10 days.
  • Goldenrod leaf extracts (high concentration) reduced growth of aboveground and belowground parts of lettuce as well as competition for light and soil nutrients. However, low concentrations of goldenrod leaf extracts dramatically improved growth of lettuce roots, competition for light, soil nutrient availability, leaf photosynthetic area and growth competitiveness. The combination of goldenrod leaf extracts and heavy metal pollution was synergistic on most lettuce germination parameters, probably because high concentrations of goldenrod leaf extracts together with heavy metal pollution had a synergistic negative impact on lettuce germination.
  • Consequently, increased levels of heavy metal pollution may favour invasion of invasive alien species while largely suppressing germination of indigenous species.
  相似文献   

18.
Fusing explainable artificial intelligence (X-AI, AI with decipherable decision making process) and exascale computing ― 1018, or a quintillion, floating-point operations per second (flops) level of performance ― can help plant and computational biologists achieve breakthroughs in designing multi-criteria crop ideotypes (i.e. crops with the optimal combination of traits for a given environment), mapping global climatypes, revealing the underlying biologically relevant interactions (e.g. SNP correlation network, 3D-interactome network) and, consequently, accelerating food and energy plant breeding programs widely recognized as critical to achieving the United Nations Sustainable Development Goals.
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

19.
  1. Studying the geographical distribution of species can reveal conditions and processes that may drive species presence and abundance. Organism distribution has frequently been explained by climate, but the relative role of local environmental predictors is not fully understood. Moreover, in the freshwater realm, intrinsic differences existing between different categories of water bodies can lead to significant differences in species–environment relationships. Here, we tested the relative importance of broad-scale climate and local environmental predictors in explaining plant species distributions in freshwater lakes and streams.
  2. We built species distribution models to investigate which predictors best explain aquatic plant distribution in two categories of water bodies. We used species inventories and records of three climate and eight local environmental predictors for 150 lakes and 150 streams in Finland.
  3. We found that sets of predictors that explain the distribution of macrophyte species are unique depending on if species are in a lake or a stream. Overall, air temperature and ecosystem size were essential to predict aquatic plant species presence in both water body categories. Broad-scale climate predictors were always very important in explaining species distribution, while local environmental conditions such as water chemistry were of variable influence, depending on species and water body category.
  4. These results are probably due to high spatial and temporal variability and range of water physico-chemical parameters, especially in streams. Nonetheless, despite a lower relative importance than climatic factors, local environmental predictors also strongly affected species distributions.
  5. Our findings highlight that incorporating local environmental conditions to species distribution models in addition to climate predictors is necessary to improve predictions, particularly for distribution of stream flora. Considering the species-specific responses of aquatic plants to their environment, studying species individually with species distribution models represents a useful analysis.
  相似文献   

20.
  • There are no records of established plant pathogenic Phytophthora species in Finnish forests, but they are likely in the future. Therefore, the effects of Phytophthora inoculations on young, ca. 2‐month‐old silver birch (Betula pendula) seedling roots and shoots were investigated.
  • Visual inspection of dark discoloration, direct PCR and re‐isolation, and detailed root morphology analyses were used to evaluate the effects of Phytophthora inoculation on roots. Symptoms in leaves and stems were also recorded.
  • Phytophthora was successfully re‐isolated from 67% of the surface‐sterilized roots of inoculated seedlings, but not from the non‐inoculated control seedlings. Dark discolorations were found more often in the root segments of inoculated seedlings than in control seedlings. In the Phytophthora‐treated seedlings, discoloured root segments were usually linked and found primarily in the main root or lateral roots attached to it, whereas in the control seedlings a few single discoloured root segments were scattered throughout the root systems. The number of root segments was lower in the inoculated than in the control seedlings, indicating root loss after Phytophthora inoculation. In the shoots of inoculated birches, leaf and shoot wilting was observed.
  • The appearance of wilting in shoots without visible dark discoloration in the base of stems indicated that symptoms originated from roots inoculated with Phytophthora.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号