首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vascular system of the stem of Stylobasium was investigated during its primary and secondary phases with both light and electron microscopic methods. It contains collateral bundles arranged in a ring, separated by rays which undergo regular cambial growth. The phloem consists of short sieve elements connected to sieve tubes by simple sieve plates, companion cells of the same length, and phloem parenchyma cells. During their autophagy-like differentiation and maturation, typical of all angiosperms, the sieve elements of Stylobasium have a peculiar feature, whereby they develop and retain form-Pfs plastids (containing protein filaments and starch). The sieve-element plastids of the two Stylobasium species, and of some 100 species belonging to taxa of which Stylobasium had been considered to be a possible member, have been studied by transmission electron microscopy. With the exception of a few species with form-Pcs plastids (containing a single small protein crystal in addition to starch), the great majority of taxa studied are characterized by S-type sieve-element plastids (containing starch only). The presence of form-Pfs plastids in Stylobasium supports its separation into the unigeneric Stylobasiaceae and the placement of this family close to other form-Pfs or form-Pcfs-containing taxa. While other characters would exclude an affiliation to the Magnolianae (form-Pfs plastids in Canella) or Caryophyllales (form-Pfs plastids in Microtea), an association with the form-Pcfs families Connaraceae and Mimosaceae is positively considered and corresponds to their frequent allocation close to the Rutales and Sapindales. Within the Rutales/Sapindales the sizes of sieve-element plastids (average diameter) range from very large (e.g. in the Julianaceae) to comparatively small (e.g. in Aceraceae) and are used to group the families. The sieve element characters of the Coriariaceae (tiny plastids with almost no starch, wide sieve plate pores, copious P-protein) suggest their removal from Rutales/Sapindales into the neighbourhood of the Cucurbitaceae.  相似文献   

2.
A monoclonal antibody, 12C9, an anti-idiotypic mimic of dothistromin, a toxin produced by Dothistroma pini, was found to label the cell wall of sieve elements in a number of different plant tissues and species. The antibody labeled apple leaf tissue, tobacco leaf mid vein, leaf and meristem, and Coprosma robusta leaf mid vein. Labeling was restricted to cell walls of sieve elements and did not label the companion cells or the lumen of the cells. The antibody labeled over a wide range of dilutions. This antibody could be used to differentiate sieve elements from other types of phloem. It could also be used to co-localize sieve elements and microorganisms such as phytoplasmas stained with DAPI.  相似文献   

3.
H.-D. Behnke  A. Schulz 《Planta》1980,150(5):357-365
The wound phloem bridges which have developed six days after interrupting an internodal vascular bundle contain wound sieve-elements, companion cells, and phloem parenchyma cells. An analysis of the meristematic activity responding to the wounding clearly demonstrates that three consecutive divisions are prerequisite to the formation of phloem mother-cells. Companion cells are obligatory sister cells of wound sieve-elements, connected to the latter by specific plasmatic strands and provided with a dense protoplast. Six days after wounding most of the wound sieve-elements are still at a nucleate state of development, but already have characteristic P-protein bodies and plastids containing sieve-element starch. Their cytoplasmic differentiation corresponds to the changes recorded during maturation of ordinary sieve elements. Sieve-plate pores penetrate through preexisting parenchyma cell walls, only, and develop from primary pitfield-plasmodesmata. Wound sieve-elements do not connect to preexisting bundle sieve-elements, they open a new tier of young sieve elements produced by cambial activity.  相似文献   

4.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

5.
Real-time imaging of phloem unloading in the root tip of Arabidopsis   总被引:7,自引:2,他引:5  
Confocal laser scanning microscopy (CLSM) has been used to image phloem transport and unloading in the root tip of Arabidopsis. The fluorescent probe 5(6) carboxyfluorescein (CF) was ester loaded into a single cotyledon and the entire seedling placed within an observation chamber under the microscope. Translocation of CF to the root tip was rapid, followed by unloading into discrete concentric files of cells. The position of the prominent unloading ‘zone’ corresponded precisely with that of the two protophloem files of sieve elements, demonstrating a functional role of these cells in symplastic sieve-element unloading. Symplastic transport following unloading was confined to the elongating zone of the root with little basipetal transport to more mature cells. Following photobleaching of the unloading zone, phloem transport was restored immediately into the protophloem sieve elements, followed rapidly by lateral, symplastic sieve-element unloading. The results demonstrate that phloem transport processes can now be imaged in real time, and non-invasively, within an intact plant system.  相似文献   

6.
Stem tissue of Lycopodium lucidulum Michx. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Although their protoplasts contain similar components, immature sieve elements can be distinguished from parenchymatous elements of the phloem at an early stage by their thick walls and correspondingly high population of dictyosomes and dictyosome vesicles. Late in maturation the sieve-element walls undergo a reduction in thickness, apparently due to an “erosion” or hydrolysis of wall material. At maturity, the plasmalemma-lined sieve elements contain plastids with a system of much convoluted inner membranes, mitochondria, and remnants of nuclei. Although the endoplasmic reticulum (ER) in most mature sieve elements was vesiculate, in the better preserved ones the ER formed a tubular network closely appressed to the plasmalemma. The sieve elements lack refractive spherules and P-protein. The protoplasts of contiguous sieve elements are connected with one another by pores of variable diameter, aggregated in sieve areas. As there is no consistent difference between pore size in end and lateral walls these elements are considered as sieve cells.  相似文献   

7.
W. Eschrich  J. Fromm  R. F. Evert 《Protoplasma》1992,167(3-4):145-151
Summary For the histochemical localization of nucleoside triphosphatases at the electron microscopic level, prefixed tissues were incubated with lead nitrate in addition to substrate (GOMORI reaction). While ATP and UTP as substrates gave electron-dense reaction products at the plasmalemma of sieve tubes, companion cells and phloem parenchyma cells, and at plasmodesmata in primary pitfields, AMP gave reaction products only at the tonoplast of parenchyma cells. Since electron-dense deposits also occur in cell walls and vacuoles, energy dispersive X-ray microanalysis was used to distinguish between lead deposits and lead-phosphate deposits. The latter were restricted to the symplast. Among the three plant species used, the leaf bundle phloem ofHordeum distichon showed ATPase activity largely restricted to the phloem cells, except for the thickwalled sieve tubes. Some activity also bordered the chloroplasts of the bundle sheath cells. In the C4 plantGomphrena globosa, ATPase and UTPase activities appeared to be the greater in phloem parenchyma cells than in sieve tubes. In the phloem of youngMonstera deliciosa roots, ATPase occurred not only at the plasmalemma of sieve tubes, but also around sieve-tube plastids. When compared with AMP as substrate, it appears that nucleoside triphosphates are the natural substrates of the enzyme(s) in the plasmalemma of sieve tubes and phloem parenchyma cells.  相似文献   

8.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

9.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

10.
Taiwania Hayata contains two species: T.flousiana Gaussen and T. cryptomerioides Hayata, both endemic to China. T. flousiana was investigated with both light and scanning electron microscopes in respect to shoot apex, external and internal surfaces of leaf cuticle, primary leaf, juvenal and mature leaves, young stem, secondary phloem and wood of stem, etc, It is shown that the shoot apex consists of the following five regions: (1) the apical initials; (2) the protoderm, (3) the subapical moher cells;. (4) the peripheral meristem, and (5) the pith mother cells. The periclinal and anticlinal division of the apical initials takes place with approximately equal frequency. The juvenal leaf is nearly triangular or crescent-shaped in cross section and belongs to the leaf type II. The mature leaf is quadrangular in cross section (the leaf type I). There are a progressive series of changes in size and shape of the leaf cross section. The stoma of the mature leaf is amphicyclic and occasionally tricyclic. The crystals in the juvenal leaf cuticle are more abundant than those in the mature leaf cuticle. The transfusion tissue conforms to the Cupressus type. The structure of juvenal leaf is the nearest to that in Cunninghamia unicanaliculata D. Y. Wang et H. L. Liu, while the mature leaf is similar to that of the Cryptomeria. Sclerenchymatous cells of the hypodermis in the young stem comprise simple layers and are arranged discontinuously. No primary fibers are found in the primary phloem. Medullary sheath is present between the primary xylem and the pith. There are some sclereids in the pith. The secondary phloem of the stem consists of regularly alternate tangential layers of cells in such a sequence: sieve cells, phloem parenchyma cells, sieve cells, phloem fibers, sieve cells. The phloem fiber may be divided into thick-walled and thin-walled phloem fiber. The crystals of calcium oxalate in the radial walls of sieve cells are abundant. Homogeneous phloem rays are uniseriate or partly biseriate, 1-48 (2-13) cells high, and of 26-31 strips per square mm. Growth rings of the wood in Taiwania are distinct. The bordered pits on the radial walls of early wood tracheids are usually uniseriate, occasionally paired and opposite pitting. Wood parenchyma is present, and its cells contain brown resin substances. Their end walls are smooth, lacking nodular thickenings. Wood rays are homogeneous. Cross-field pits are cupressoid. Resin canals are absent. Based on the anatomy of Taiwania and comparison with the other genera of Taxodiaceae, the authors consider the establishment of Taiwaniaceae not reasonable, but rather support the view that the genus is better placed between Cuninghamia and Arthrotaxis in Taxodiaceae.  相似文献   

11.
A. Schulz 《Protoplasma》1986,130(1):12-26
Summary 48 hours after interrupting the root stele ofPisum, wound phloem initiated (proximally or distally to the wound) to reconnect the vascular stumps was found to contain some nucleate wound-sieve elements. At the elongating end of an incomplete wound-sieve tube these elements exhibit a sequence of ultrastructural changes as known from protophloem-sieve tubes. Elongation occurs by the addition of newly divided (wound-) sieve-element/companion-cell complexes. In order to dedifferentiate and assume a new specialization formerly quiescent stelar or cortical cells require at least one (mostly more) preliminary division. Companion cells are consequently obligatory sister cells to wound-sieve elements.By reconstruction using serial sections it could be shown that wound-sieve tubes elongate bidirectionally, starting in an early activated procambial cell of the stele. The elongation is directed by the existence of plasmodesmata, preferably when lying in primary pit fields, and by the plane of preceding divisions. Thus, the developing wound-sieve tube can deviate from the damaged bundle and radiate into the cortex as soon as the plane of the preceding divisions is favourable. In the opposite direction, elongating wound-sieve tubes run parallel to pre-existing phloem traces, thus broading their base at the bundle for the deviating part of the wound-sieve tube. Frequently an individual wound-sieve tube is supplemented at the bundle by a further wound-sieve tube which is partly running parallel to it. Both sieve tubes are interlinked with sieve plates by three-poled sieve elements.Ultrastructurally, the developmental changes of nucleate wound-sieve elements follow the known pattern. In spite of its contrasting origin and odd shape a mature wound-sieve element eventually has the same contents as regular sieve elements: sieve-element plastids, mitochondria, stacked ER and small amounts of P-protein within an electronlucent cytoplasm.  相似文献   

12.
Penetration of the bark of Tilia americana L., the linden tree, by Longistigma caryae (Harr.) is mainly intracellular. Like other aphids, L. caryae secretes a saliva sheath which encloses the path of the stylets, beginning with an external collar of sheath material on the surface of the periderm. Stylet sheaths within the bark gave positive reactions for callose, suggesting that, in reaction to wounding, punctured parenchyma cells secrete callose which diffuses throughout the stylet sheaths. Other, more conspicuous effects of wounding included: proliferation and enlargement of cells of the cortex and dilated rays bordering some stylet sheaths, formation of tylosoids in punctured sieve elements, deposition of massive amounts of callose in penetrated sieve elements and in sieve elements bordering penetrated cells, and stimulation of cambial activity and xylem differentiation. Stylet tips located in living sieve elements projected beyond their sheaths which terminated outside the sieve-element walls. It is suggested that such sieve elements can be considered to be functional. None of the living sieve elements containing stylet tips showed any signs of injury which could be attributed to the presence of the stylets. Stylet tips of feeding aphids were found in living sieve elements of both 1965 and 1966 phloem increments clearly indicating that L. caryae can feed on linden sieve elements more than 1 year of age.  相似文献   

13.
Differentiating sieve cells can be qualitatively and quantitatively determined in white pine or other species of plants with phloem cells possessing nacreous primary walls or thickened secondary walls. Transverse sections from stained and unstained preparations of white pine examined in polarized light reveal a distinct zone of birefringent sieve cells situated between the cambial zone and layer of seasonal phloem parenchyma. The deposition of secondary walls in sieve cells in pine and their unequivocal recognition in polarized light presents a simple, effective means for detecting newly differentiated sieve cells and for quantitatively estimating their production during an experimental period.  相似文献   

14.
The sieve-element characters of 40 species from all families making up the monocotyledon order Zingiberales have been studied by transmission electron microscopy. While phloem-proteins are a typical component of all eight families, the Zingiberaceae are characterized by nondispersive protein bodies derived from nuclear crystals. The sieve-element plastids are of the form-P2cs, i.e. contain cuneate protein crystals (as typical of all monocotyledons) and starch grains, those of the family Musaceae have protein filaments in addition (form-P2cfs). The exclusiveness of the form-P2c(f)s plastids contributed to the homogeneity of the order and its distinctness among other monocotyledon taxa. When diameters of the sieve-element plastids from leaf phloem are compared, in the “banana group” the family averages of the Strelitziaceae and the Lowiaceae have, respectively, maximum and minimum values and are clearly different from those in the Musaceae, the family in which they have been included previously. In the “ginger group”, the family averages of the Zingiberaceae, Costaceae, and Marantaceae are close to the order average, with only Cannaceae having minimum values. A comparison of species averages, however, reduces the size differences between families: the value for Ravenala (Strelitziaceae) is close to those of the five Musaceae tested, and that of Globba (Zingiberaceae) even slightly lower than the species average of Canna.  相似文献   

15.
《Aquatic Botany》1990,36(3):217-236
The leaf anatomy, histochemistry and ultrastructure of the intertidal and subtidal seagrass Zostera muelleri Irmish ex Aschers. from Westernport Bay, Victoria were studied. Unusual anatomical and ultrastructural features are compared with other seagrasses and their functional significance is assessed. Subcuticular cavities are present in the young blade, but not observed in the older blade nor young and old leaf sheath. Wall ingrowths occur in the blade epidermal cells particularly on the inner tangential walls and the lower portions of the radial walls. Plasmodesmata are present between adjacent epidermal cells and between the epidermal and mesophyll cells, suggesting that solutes could transfer between these tissues both symplastically and apoplastically. Each leaf has three longitudinally aligned vascular bundles, each of which comprises a single xylem element isolated from the phloem tissue. The phloem consists of nacreous-walled sieve elements accompanied by phloem parenchyma cells which also process wall ingrowths. The xylem walls are completely hydrolysed and the middle lamella borders directly on the xylem lumen. Leaves have prominent air lacunae bisected transversely by septa at regular intervals along their length. Each septum consists of a file of small parenchyma cells with wall protuberances projecting into intercellular space. There are no major structural differences between the subtidal and intertidal plants, but the former have larger leaves and more leaves per shoot than the latter. In addition, a network of unusual reticulated fungal hyphae is present in the leaf intercellular spaces of the subtidal form and this network may facilitate solute transfer in these plants.  相似文献   

16.
Cytopathology of viroid-infected plant tissue II. Light- and electron microscopical investigations on the leaf tissue of the Chrysanthemum morifolium cultivar “Mistletoe” after infection with the chrysanthemum stunt viroid (CSV) The infection of the Chrysanthemum morifolium cultivar “Mistletoe” with the chrysanthemum stunt viroid (CSV) leads to the appearance of numerous yellowish leaf spots 2–5 mm in diameter. The cells of these chlorotic leaf areas were investigated by phase contrast- and electron microscopy and compared with the cells of the adjacent green tissue and the tissue of healthy plants. Phase contrast microscopy showed that the chlorotic tissue containes about 50 % more cells per area and that their size is reduced by 30–60 %. The parenchymatic cells of the xylem and phloem are irregular and their walls are malformed. In these cells the chloroplasts are reduced to about half in their size and number. In the electron microscope an accumulation of osmiophilic material between the thylakoid membranes of the chloroplasts of the chlorotic cells and a deterioration of the chloroplast stroma can be observed. Moreover, malformations of the cell wall and in the cell wall-associated plasmalemma-somes are found, which lead to an increase in contrast and to irregularities of their surface and internal structure. The most prominent CSV-specific cytopathic effect in cells of the vascular tissue is the extreme accumulation of microfilament bundles which were analysed in detail with the aid of a goniometer. The observed viroid-induced ultrastructural changes are compared with previously described changes caused by conventional plant viruses and the possible functional implications are discussed.  相似文献   

17.
A monoclonal antibody, 12C9, an anti-idiotypic mimic of dothistromin, a toxin produced by Dothistroma pini, was found to label the cell wall of sieve elements in a number of different plant tissues and species. The antibody labeled apple leaf tissue, tobacco leaf mid vein, leaf and meristem, and Coprosma robusta leaf mid vein. Labeling was restricted to cell walls of sieve elements and did not label the companion cells or the lumen of the cells. The antibody labeled over a wide range of dilutions. This antibody could be used to differentiate sieve elements from other types of phloem. It could also be used to co-localize sieve elements and microorganisms such as phytoplasmas stained with DAPI.  相似文献   

18.
The leaf primordia of Lactuca sativa ‘Meikoningen’ develop from a subapical initial in the second layer of the tunica on the side of a fiat shoot apex. Subsequent growth of the subsurface lamina is initiated by submarginal initials which divide anticlinally to produce an adaxial layer and ***a biseriate abaxiallayer, and periclinally to produce a middle layer from which procambium differentiates. The protoderm is derived from the first tunica layer by continuous anticlinal divisions. The activity of the subapical and submarginal initials is completed when the leaf is 0.3 mm in length and 4.0 mm in width, respectively. Continued growth of the leaf to 130-150 mm results from intercalary cell division and enlargement. The mature venation is visibly delineated when the leaf is 25-30 mm in length. Laticifer and phloem cells are initiated by the same mother cells in the ***procambium. The former become non-septate laticifers by resorption of cross walls. They mature concurrently with the phloem and before the xylem.  相似文献   

19.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

20.
The phloem of the Myristicaceae is composed of sieve elements, parenchymatous cells, and fibers. Within the metaphloem and secondary phloem parenchymatic layers including prominent secretory elements alternate with tangential bands of fibers and layers composed of sieve elements, companion cells and phloem-parenchyma cells. among the latter the sieve elements are most abundant and easily identified by the presence of thick (nacreous) walls. The most characteristic feature of the sieve elements of Myristicaceae (and found nowhere else among the Magnoliiflorae) are nuclear crystals, which are released into the lumen during nuclear degeneration and persist in the mature cell. P-and S-type sieve-element plastids were recorded for the 18 species investigated. Both types of the plastid are characterized by large diameters and many medium-sized starch grains. The sizes and contents (small protein crystals only) of the P-type plastids of the Myristicaceae do not conform to the tiny P-type plastids (with large protein crystals) of the Annonaceae, a family to which the Myristicaceae is traditionally allied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号