首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Optimal foraging theory is based on the assumption that at least some aspects of foraging behavior are genetically determined (Pyke et al. 1977; Kamil and Sargent 1980; Pyke 1984). Nonetheless, very few studies have examined the role of genetics in foraging behavior. Here, we report on geographical differences in the foraging behavior of a spider (Agelenopsis aperta) and investigate whether these differences are genetically determined. Field studies were conducted on two different populations of A. aperta: one residing in a desert riparian habitat, and the other in a desert grassland habitat. Data from the spiders' natural encounters with prey demonstrated that grassland spiders exhibited a higher frequency of attack than riparian spiders towards 13 of 15 prey types, including crickets and ants. Grassland spiders also had shorter latencies to attack 12 of 15 prey types, including crickets and ants, than riparian spiders. Subsequently, we reared grassland and riparian spiders under controlled conditions in the laboratory and observed their interactions with prey to determine whether the populational differences we found in the field could be genetic. Again, grassland spiders showed a shorter latency to attack prey (crickets, ants) than riparian spiders. These latencies were not significantly affected by the hunger state or age of the spiders. Finally, we reared a second generation (F2) of grassland and riparian spiders in the laboratory and observed their interactions with prey to determine whether the populational differences in the previous generation were due to genetic effects or maternal effects. As before, grassland spiders exhibited a shorter latency to attack prey (crickets) than riparian spiders. We conclude that the foraging differences we observed between these two populations of A. aperta are genetically determined. These differences probably have resulted from either natural selection acting directly on attack frequency and the latency to attack prey, or natural selection acting on traits which are genetically correlated with these aspects of foraging behavior.  相似文献   

2.
A previous study (von Brockhusen -Holzer & Curio 1990) had led to the major conclusion that prey-naive Anolis lineatopus hatchlings differ in terms of a “hard-wired” perceptual mechanism underlying the recognition of cricket prey. We reconsider here one result leading to that conclusion since it rested on negative evidence in one treatment group as compared to another. A newly applied discriminant analysis utilizing the complete prey rejection/acceptance data of individuals in the two treatment groups, i.e. cricket-rejectors and prefed cricket-acceptors, again permits the repudiation of a motivation-based alternative hypothesis explaining the rejector-acceptor dichotomy. Thereby we reconfirm the original hypothesis of a “hard-wired”, preprogrammed polyethism underlying prey recognition.  相似文献   

3.
Many herbivorous arthropods use defensive chemistry to discourage predators from attacking. This chemistry relies on the ability of predators to rapidly learn to recognize and avoid offensive stimuli. Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), employs multifaceted chemical defences in its haemolymph, which may contribute significantly to its success as a major economic pest. Here, we test the hypothesis that agrobiont predators can rapidly learn to recognize and avoid WCR larvae, and will thereby reduce their contribution to WCR suppression. In controlled feeding assays, the effectiveness of WCR haemolymph defences varied across three predator taxa (crickets, centipedes, and ants). Centipedes (Chilopoda: Lithobiidae) were minimally affected by WCR defences, but crickets [Gryllus pennsylvanicus Burmeister (Orthoptera: Gryllidae)] spent less time feeding on WCR than on an undefended control prey, house fly maggots. However, we uncovered no evidence indicating that experienced crickets rapidly learn to avoid WCR larvae, indicating that haemolymph defences offer few, if any, survival benefits for WCR. Colonies of ants [Lasius neoniger Emery (Hymenoptera: Formicidae)] switched from low worker participation in initial attacks on WCR to higher worker participation in subsequent attacks, indicating an attempt to overcome, rather than avoid, WCR haemolymph defences. These results suggest that a diverse assemblage of natural enemies will show a diverse array of behavioural responses to toxic pest prey, and highlight the importance of behavioural diversity in driving the function of natural enemy assemblages.  相似文献   

4.
Animals learn to associate sensory cues with the palatability of food in order to avoid bitterness in food (a common sign of toxicity). Associations are important for active foraging predators to avoid unpalatable prey and to invest energy in searching for palatable prey only. However, it has been suggested that sit-and-wait predators might rely on the opportunity that palatable prey approach them by chance: the most efficient strategy could be to catch every available prey and then decide whether to ingest them or not. In the present study, we investigated avoidance learning in a sit-and-wait predator, the praying mantis (Tenodera aridifolia). To examine the effects of conspicuousness and novelty of prey on avoidance learning, we used three different prey species: mealworms (novel prey), honeybees (novel prey with conspicuous signals) and crickets (familiar prey). We sequentially presented the prey species in pairs and made one of them artificially bitter. In the absence of bitterness, the mantises consumed bees and crickets more frequently than mealworms. When the prey were made bitter, the mantises still continued to attack bitter crickets as expected. However, they reduced their attacks on bitter mealworms more than on bitter bees. This contrasts with the fact that conspicuous signals (e.g. coloration in bees) facilitate avoidance learning in active foraging predators. Surprisingly, we found that the bitter bees were totally rejected after an attack whereas bitter mealworms were partially eaten (~35%). Our results highlight the fact that the mantises might maintain a selection pressure on bees, and perhaps on aposematic species in general.  相似文献   

5.
Red is a common colour signal in both aposematic warning displays, and in fruit displays. One common feature is that red is conspicuous against the natural background of the prey and fruits. However, there is a potential conflict between fruits and aposematic prey in how a bird predator should react to red colours, where fruits aim to attract birds and aposematic insects aim to ward off, often the same bird individuals. Here we investigate possible differences in red/green colour preferences of frugivorous, wild-caught, young blackcaps (Sylvia atricapilla), when food is either a fruit or an insect. Birds in two groups were presented with a series of pairs of food items that had been artificially painted red and green, in the order of (I) fruits, crickets and maggots, or (II) crickets, fruits, and maggots. Birds first presented with crickets or fruits differed in first attacks directed at the two colours: They showed no colour preference between fruits, but showed a clear preference for green over red crickets. Also, birds in both experimental groups clearly preferred green to red maggots. These results provide evidence that wild, frugivorous birds are able to differentiate between prey types, and show different colour preferences depending on whether food is insect or fruit. We conclude that blackcaps show an attack bias against red insects, and that one important function of the signal in insects, is to inhibit attack after discovery. However, the lack of preference for red fruits suggests other functions to red fruit displays, such as facilitating discovery per se, rather than directly stimulating attack after discovery.  相似文献   

6.
Frogs are able to respond to a prey stimulus throughout their 360° ground-level visual field as well as in the superior visual field. We compared the likelihood of frogs choosing between a more nasally located, ground-level prey versus a more temporally located ground-level prey, when the prey at the nasal location is further away from the frog. Two crickets were presented simultaneously at 9 pairs of angles that included both crickets in the binocular visual field, both crickets in the monocular visual field, or one cricket in the binocular field and one in the monocular field. Frogs chose the more nasally located prey at least 71% of the time when the more temporal prey was in the monocular field; and 64% of the time when both prey were in the binocular field. Frogs tended to choose the more nasally located prey, even though it takes the frog longer to reach the prey. In addition, when given a choice between a prey located at ground level versus a prey located in the superior field, frogs tend to choose the prey at ground-level. These results suggest that there is a neural mechanism that biases frogs’ responses to prey stimuli.  相似文献   

7.
Foraging behavior of a pit-building antlion larva, Myrmeleon boreTjeder was investigated experimentally to elucidate the relation between the feeding level and pit relocation.
  1. In artificial sands constructed in the field the 3rd instar larvae of M. bore rarely changed the positions of their pits, though several antlions had moved actively until they constructed pits. The average feeding rate was 0.3 prey/day/pit, and about 60% of prey captured were ants.
  2. To examine whether or not M. bore larvae concentrate into the area where they can capture more prey, 8 antlions were released into each of 6 boxes filled with sand. I divided the sand surface of each box into two half areas, then gave prey to the pits built in a half area and gave no prey to the pits built in the other half. During the 50-day observation period, nonfed antlions never moved into the area where prey were given.
  3. The 3rd instar larvae were reared separately without food. Even under starved conditions they rarely relocated their pits until dealth. The average duration of survival period was 83.9 days.
  4. The experimental results indicate that M. bore larvae adopt a tactic of sedentary ambushing. These larvae exhibit low movement rates which are independent of prey capture rates.
  相似文献   

8.
Differences in foraging patterns mediated by sensory cues were examined between adult and juvenile male and female wolf spiders (Schizocosa rovneri; Lycosidae). Patch residence time for thirty-one spiders were tested among juveniles and adults in artificial foraging patches. Patches varied in sensory information provided by live prey (crickets) as follows: visual stimuli alone; vibratory stimuli alone; visual and vibratory stimuli together; and control (no stimuli). Spiders moved between patches for one hour, but could not feed. Adult Schizocosa rovneri use primarily visual information to determine patch residence time, but juveniles use vibratory cues as well. Significant age and sex-based differences in the use of sensory cues suggest that observed divergent foraging strategies are partly due to the use of different perceptual cues in prey detection.  相似文献   

9.
The study of geographical variation is a key approach to understand evolution of ecological interactions. We investigated geographical variation in the interaction among Crotalaria pallida (Leguminosae: Papilionideae), its specialized herbivore, Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and ants attracted to extrafloral nectaries (EFNs). First, we used common-garden experiments with plants collected in different sites at different geographical scales to test for differences among populations in C. pallida attractiveness to ants. When we compared three populations from Southeast Brazil (150 km apart), the number of visiting ants per plant, and the percent of termite baits attacked by ants, were significantly different among plant populations. In a comparison of populations from SE Brazil and Florida (USA), there was no significant difference between the populations in the number of ants per plant or the frequency of baits attacked. Second, we tested in a common garden if U. ornatrix larvae present any behavior to avoid ant predation, and if there were genetic differences among populations. We observed that most larvae moved away from the vicinity of the EFNs (flowers and fruits) to the plant leaves. Of the larvae that moved to leaves, only 10% were attacked by ants while 89% of larvae that stayed near the fruit/flower were attacked. There was a significant difference among populations in the frequency of larvae that moved to the leaves and the frequency of larvae attacked by ants. We discuss the possible causes of the geographical differences observed and propose future research directions in this system.  相似文献   

10.
Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator–prey systems with sensory ecologies based on flow sensing, in air and water.  相似文献   

11.
Chemical information often mediates interactions between predators and prey, and threat‐sensitivity theory includes predictions that prey species should respond to chemical signatures of predators in a manner that is commensurate with the level of the assessed threat. Using the European house cricket (Acheta domesticus), we explored the influence of diet‐derived cues from the centipede Scolopocryptops sexspinosus on anti‐predator behavior in three laboratory experiments. In experiment 1, we compared the amount of time that adult female crickets spent on untreated filter paper and filter paper exposed to centipedes fed either the larvae of Hermetia illucens (black soldier fly), crickets, or a mixture of fly larvae and crickets. We discovered that crickets spent significantly less time on filter paper exposed to centipedes fed crickets only or a mixture of crickets and fly larvae compared with blank filter paper or filter paper exposed to centipedes fed fly larvae only. In our second experiment, we compared the amount of time that crickets spent on blank filter paper and filter paper exposed to adult female conspecifics to rule out the possibility that crickets simply avoid all filter paper exposed to metabolic by‐products, and crickets exhibited no discrimination. In our third experiment, we tested the potential effects of diet order on anti‐predatory behaviors. Specifically, we compared the amount of time that adult female crickets spent on filter paper exposed to centipedes fed fly larvae followed by crickets and filter paper exposed to centipedes fed crickets followed by fly larvae. We discovered no diet sequence effect. Our study demonstrates that European house crickets are sensitive to the chemical cues of their centipede predators, but only when centipedes have fed upon crickets.  相似文献   

12.
Larvae of the muscid fly Limnophora riparia live in lake outlets and prey on other invertebrates living there. In experiments, we demonstrated that larvae prefer moss as a substratum, though they will bury themselves in any suitable material to avoid light. The substratum is used to anchor Limnophora larvae as they attack their prey. When given a choice of prey they preferred chironomid and black fly larvae to oligochaetes and psyehodid larvae. Larvae of the black fly Simulium noelleri were used in laboratory experiments to test the interaction of predator and prey. Limnophora larvae attacked black fly larvae of all sizes, but preferred small larvae, the body contents of which were often removed completely. Increasing prey or predator density did not affect this latter preference, though an increase in predator density, or a decrease in prey density, did cause the predator to take prey of medium size as well as small prey. Limnophora larvae showed the same size preference when attacking dead (freshly-killed) prey and they preferred to attack larvae rather than pupae when both were available. They did not attack black fly eggs.  相似文献   

13.
Numerous studies on the feeding behavior of snakes have reported the consistency of tongue-flick responses with their natural diets. For representatives of widely distributed, dietary generalist species from particular localities, we can expect that their tongue-flick responses to potential prey unavailable in their original habitats have been reduced whereas those to prey common in the habitats have been enhanced. To test this hypothesis, intraspecific variation in tongue-flick responses to prey chemicals was examined using ingestively naive snakes (Elaphe quadrivirgata) from dietarily different populations: populations from the main Japanese island, where the snakes' diet predominantly consists of sympatric frogs, and from Mikura-jima Island, where no frogs occur and the snakes thus chiefly prey on lizards. We presented chemical stimuli from six items including those from their natural and potential prey (fish, frog, lizard, mouse, water, and cologne) to newborn snakes. Significant effects of stimuli on the tongue-flick responses were detected. On the other hand, effects of population and interaction between stimuli and population were not significant, and individual comparisons revealed no significant interlocality differences in responses to either frog or lizard chemicals. Thus, our hypothesis was not supported. However, in the Mikura-jima sample, significantly fewer snakes responded to frog chemicals than in the main island sample. The significance of the inconsistency between prey recognition ability and prey availability in the Mikura-jima population are discussed. Received: October 17, 2000 / Accepted: December 14, 2000  相似文献   

14.
Animals may develop mutualistic associations with other species, whereby prey offer resources or services in exchange for protection from predators. Alternatively, prey may offer resources or services directly to their would-be predators in exchange for their lives. The latter may be the case of hemipterans that engage in mutualistic interactions with ants by offering a honeydew reward. We test the extent to which a honeydew offering versus partner recognition may play a role as proximate mechanisms deterring ants from predating upon their hemipteran partners. We showed that, when presented with a choice between a hemipteran partner and an alternative prey type, mutualist ants were less likely to attack and more likely to remain probing their hemipteran partners. This occurred even in the absence of an immediate sugary reward, suggesting either an evolved or learned partner recognition response. To a similar extent, however, ants were also less likely to attack the alternative prey type when laced with honey as a proxy for a honeydew reward. This was the case even after the honey had been depleted, suggesting an ability of ants to recognize new potential sources of sugars. Either possibility suggests a degree of innate or learned partner recognition.  相似文献   

15.
Summary An experiment was performed to assess the relative survival of two forms of 5th instar larvae of Lygaeus equestris (Heteroptera, Lygaeidae) — the normal red form, called aposematic, and a mutant grey form, called cryptic — when given to hand-raised great tits (Parus major).Sixteen birds were presented with aposematic larvae and 16 were presented with cryptic larvae in 10 consecutive trials. One attack per trial was allowed. Both larval forms were presented against a background matching the grey larvae, but since both prey types were presented in a specific place known to the predator, detection rate for both was assumed to be unity.Birds learned to avoid both prey types. However, the survival of the aposematic larvae was higher than that of the cryptic ones due to three aspects of predator behaviour: i) a greater initial reluctance to attack, ii) a more rapid avoidance learning, and iii) a lower frequency of killing in an attack, when the prey was aposematic. Moreover, a greater number of birds learned to avoid prey without killing any individual, when the prey was aposematic. This result is considered to be due to prey coloration alone, since, in a separate test, no difference in prey distastefulness could be detected.This experiment shows that individual prey can benefit from being aposematic and indicates that individual selection can be a sufficient explanation for the evolution of aposematic coloration. It was concluded that, since the survivorship was 6.4 times higher for the aposematic prey, it could have a detection rate that is correspondingly higher than the cryptic in order for the two forms to have equal fitness.  相似文献   

16.
Inducible responses in prey to predation risk can influence species interaction strength, with significant ecological consequences. Much of the past research on interactions in aquatic ecosystems has focused on remote stimuli (e.g., diffusible chemicals emitted from predators and injured conspecifics, which easily propagate through environmental water), as cues triggering trait responses in prey, and has overlooked the importance of proximate stimuli (e.g., physical disturbance and less-diffusible chemicals), which occur in attack or direct contact to prey by predators. Proximate stimuli from predators as well as remote stimuli may induce significant responses in prey functional traits such as behavior, morphology, and life history and, therefore, act as an important mechanism of top-down effects in aquatic ecosystems. In this opinion paper, we argue that studying the effects of proximate stimuli is essential to better understanding of individual adaptation to predation risk in nature and ecological consequences of predator–prey interactions. Here, we propose research directions to examine the role of proximate stimuli for phenotypic plasticity and interaction systems.  相似文献   

17.
Organization of protein digestion was examined in adult male Calosoma calidum (Carabidae) fed either ground-beef or waxmoth larvae (Galleria mellonella). Although trypsin activities in the foregut are consistently higher than those in the midgut, the luminal contents of each region are in equilibrium. Movement of fluids between the midgut and foregut is brought about by muscular contractions of the proventriculus. A 42% fall in trypsin activity of the foregut after feeding on ground-beef is due largely to disgorged enzymes being left on the food. A far higher proportion of disgorged trypsin is recovered when C. calidum feed on waxmoth larvae; beetles ingest about 74% prey protein and yet avoid ingesting digestively refractory solids. The retention of undigested macromolecules in the midgut and foregut lumen was determined using [14C]inulin labelled waxmoth larvae. Nine per cent and 25% of the radiolabel was passed in the faeces in 2 and 4 days respectively, whilst 59 and 91% of the weight gained at feeding was lost in the same intervals. The role that the peritrophic membrane and pyloric valve play in this process, as well as its implications for enzyme conservation, is discussed.  相似文献   

18.
Prey may experience ontogenetic changes in vulnerability to some predators, either because of changes in morphology or experience. If prey match their level of antipredator behavior to the level of predatory threat, prey responses to predators should reflect the appropriate level of threat for their stage of development. For larval salamanders, responses to predators may change with body size because larger larvae are less vulnerable to predation by gape‐limited predators or because fleeing responses by large salamanders may be more effective than for smaller salamanders. In a field experiment, small larval ringed salamanders, Ambystoma annulatum, responded to chemical stimuli (‘kairomones’) from predatory newts, Notophthalmus viridescens, with an antipredator response (decreased activity). Laboratory‐reared larvae decreased their activity following exposure to newt kairomones, indicating that larval ringed salamanders do not require experience with newts to recognize them as predators. In both experiments, larvae distinguished between chemical stimuli from newts and stimuli from tadpoles (non‐predators) and a blank control. In a third experiment, field‐caught (experienced) larvae showed a graded response to newt kairomones based on their body size: small larvae tended to decrease their activity while larger larvae showed no change or an increase in activity. This graded response was not observed for neutral stimuli, indicating that it is predator‐specific. Therefore, ringed salamander larvae exhibit threat‐sensitive ontogenetic changes in their response to chemical stimuli from predatory newts.  相似文献   

19.
One predator-two prey community models are studied with an emphasis on individual variation in predator behavior. The predator behaves according to a well-known prey choice model. The behavioral model predicts that predators should always attack the primary prey (more profitable prey of the two), but only attack the alternative prey (less profitable prey of the two) when the density of the primary prey is below a threshold density. The predator that accepts the alternative prey does not discriminate between the primary and alternative prey (all-or-nothing preference for the alternative prey). However, empirical studies do not result in clear all-or-nothing responses. Previous models examined the relaxation of the all-or-nothing response by assuming partial preference (e.g., predators preferentially forage on the primary prey even when they also attack the alternative prey). In this study, I consider individual variation in two predator traits (prey density perception and handling time) as the sources of the variation in the threshold density, which can make empirical data appear deviated from the expectation. I examine how community models with partial preference and individual variation differ in their dynamics and show that the differences can be substantial. For example, the dynamics of a model based on individual variation can be more stable (e.g., stable in a wider parameter region) than that of a model based on partial preference. As the general statistical property (Jensen’s inequality) is a main factor that causes the differences, the results of the study have general implications to the interpretation of models based on average per-capita rates.  相似文献   

20.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号