首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatographic applications of three novel chiral stationary phases (CSPs) deriving from (S)-(N)-(3,5-dinitrobenzoyl)tyrosine are reported, under liquid chromatographic (LC) and subscritical fluid chromatographic (SubFC) conditions. Two grafting modes of the chiral moiety have been experimented starting either from γ-mercaptopropyl-silanized (type 1) or γ-aminopropyl-silanized (type 2) silica gels. For type 2 CSPs an evaluation of the stability of the amide linkage was achieved by means of SubFC; the relative contriution of ionic and covalent bindings to the ciral recognitio aility was then outlined. The chromatographic properties of these CSPs were compared with those of the corresponding CSPs deriving from phenylglycine, p-hydroxyphenylglycine, and phenylalanine for the resolution of some tertiary phosphine oxide, naphthoyl amide, and α-methylene γ-lactam enantiomers. Some simple requirements regarding the solute and CSP structures for chiral recognition ability can be inferred from these results. In addition, the resolutio of π-acid α-N-(3,5-dinitrobenzoyl)amino esters was investigated on these π-acid CSPs. An example of preparative scale chromatography is also presented.  相似文献   

2.
A chiral stationary phase (CSP) derived from N-(1-naphthyl) leucine has been prepared. This CSP is conceptually similar to the CSP derived from N-(2-naphthyl)alanine and was expected to separate the enantiomers of the same clientele of analytes as does the latter. The magnitudes of the separation factors observed on the two CSPs may differ markedly for a given analyte, the new CSP often affording much greater enantioselectivity.  相似文献   

3.
Four chiral stationary phases (CSPs) derived from N-(3,5-dinitrobenzoyl)tyrosine have been synthesized. They differ by the substituent nature (methyl, ethyl, isopropyl, tert-butyl) of the aliphatic amide function. The enantiorecognition ability of these CSPs was evaluated with 10 racemates. For the majority of them, the stereoselectivity increases with the steric hindrance of the substituent. The chiral selector enantiomeric separation on the resulting CSPs has evidenced a reversal of elution order only for CS 4 on CSP 4 (tert-butyl substituent), suggesting a change in its conformation.  相似文献   

4.
The N-(n-butylamide) of (S)-2-(phenylcarbamoyloxy)propionic acid, easily prepared starting from the inexpensive L -ethyl lactate, can be used as convenient chiral solvating agent (CSA) to determine the enantiomeric composition of N-(3,5-dinitrobenzoyl)amino acid methyl esters.  相似文献   

5.
S K Yang  M Mushtaq  P P Fu 《Chirality》1990,2(1):58-64
1,12-Dimethylbenz[a]anthracene (1,12-DMBA) cis-5,6-dihydrodiol was synthesized by oxidation of 1,12-DMBA with osmium tetroxide in pyridine in low yield (less than or equal to 3%) and was purified by sequential use of reversed-phase and normal-phase HPLC. Two pairs of 1,12-DMBA cis-5,6-dihydrodiol enantiomers, derived from P (right-handed helix) and M (left-handed helix) conformers, were eluted as a single chromatographic peak on both reversed-phase and normal-phase HPLC. However, these four enantiomers were resolved by sequential use of two chiral stationary phase (CSP) HPLC columns. CSP (Pirkle type I) columns were packed with either (R)-N-(3,5-dinitrobenzoyl)phenylglycine or (S)-N-(3,5-dinitrobenzoyl)leucine, which is ionically bonded to gamma-aminopropylsilanized silica. Absolute configurations of enantiomers were determined by comparing their circular dichroism spectra with those of conformationally similar cis-5,6-dihydrodiol enantiomers of 4-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene with known absolute stereochemistry.  相似文献   

6.
7.
Im SH  Ryoo JJ  Lee KP  Choi SH  Jeong YH  Jung YS  Hyun MH 《Chirality》2002,14(4):329-333
Recently, it was reported that the chiral recognition ability of (R)-N-3,5-dinitrobenzoyl phenylglycinol derivative was examined as a new HPLC chiral stationary phase (CSP 1) for the resolution of racemic N-acylnaphthylalkylamines. However, the mechanism of chiral discrimination on the CSP remained elusive until now. In this study, a spectroscopic investigation of the chiral discrimination mechanism of CSP 1 was undertaken using mixtures of (R)-N-3,5-dinitrobenzoyl phenylglycinol-derived chiral selector (2) and each of the enantiomers of N-acylnaphthylalkylamines (3) by NMR study. First, the differences in free energy changes (DeltaDeltaG) upon diastereomeric complexation in solution between the complex of each isomer with chiral selector 2 by NMR titration were calculated. The values were then compared with those estimated by chiral HPLC. The chemical shift changes of each proton on the chiral selector and analytes were also checked and it was found that the chemical shift changes decreased continuously as the acyl group on analytes increased in length. This observation was consistent with the HPLC data. From these experimental results, the interaction mechanism of chiral discrimination between the chiral selector and the analytes is more precisely explained.  相似文献   

8.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Forjan DM  Kontrec D  Vinković V 《Chirality》2006,18(10):857-869
The replacement of the N-H hydrogen of the secondary amide-tethered Pirkle-concept N-(3,5-dinitrobenzoyl)-L-leucine derived chiral stationary phase with various pi-basic or aliphatic groups improved the chiral discrimination ability of new chiral stationary phases, based on the leucine- or alanine-derived chiral selector, for the enantiomers of various racemic neutral analytes with amide functional groups. Retention times decreased while separation and resolution factors increased, thus proving the role of pi-donor aromatic unit as an electron-rich shield in the front of a silica surface. In general, chiral stationary phase (CSP) 5 with the 3,5-dimethylphenyl unit showed best performance, while CSP 3, with phenyl unit, and CSP 7, with 1-naphthyl unit in the tertiary amide connecting tether, were less efficient.  相似文献   

10.
We recently reported a new C3‐symmetric (R)‐phenylglycinol N‐1,3,5‐benzenetricarboxylic acid‐derived chiral high‐performance liquid chromatography (HPLC) stationary phase (CSP 1) that demonstrated better results as compared to a previously described N‐3,5‐dintrobenzoyl (DNB) (R)‐phenylglycinol‐derived CSP. Over a decade ago, (S)‐leucinol, (R)‐phenylglycine, and (S)‐leucine derivatives were used as the starting materials of 3,5‐DNB‐based Pirkle‐type CSPs for chiral separation. In this study, three new C3‐symmetric CSPs (CSP 2, 3, and 4) were prepared by combining the ideas and results mentioned above. Here we describe the synthetic procedures and applications of the new C3‐symmetric CSPs (CSP 2–CSP 4).  相似文献   

11.
The enantiomeric composition of an enzymatically synthesized sample of the coenzyme A ester of 2-tetradecylglycidic acid (TDGA-CoA) was determined by the use of high-performance liquid chromatography with a chiral stationary phase. The stationary phase was commercially available and consisted of (R)-N-(3,5-dinitrobenzoyl)phenylglycine covalently bonded to aminopropyl silica gel. Analysis was performed using the phenacyl derivative of 2-tetradecylglycidic acid (TDGA), obtained by mild hydrolysis of the TDGA-CoA followed by reaction of the extracted TDGA with phenacyl chloride. Chromatography showed the enantiomeric purity of TDGA-CoA, synthesized in a rat liver microsomal enzyme mixture over a 2-h period, to be a 15.6:1 ratio of the R:S enantiomers (88% ee). The result demonstrates the steroselectivity of the long-chain fatty acid-coenzyme A synthetase for chiral fatty acid epoxide, TDGA.  相似文献   

12.
The direct enantiomeric resolution of albendazole sulfoxide (SOABZ), an anthelmintic drug belonging to the benzimidazole class, is reported on a chiral stationary phase (CSP) synthesized by covalent binding of (S)-N-(3,5-dinitrobenzoyl)tyrosine-O-(2-propen-1-yl) methyl ester on a gamma-mercaptopropyl-silanized silica gel. A comparison with the resolution achieved on commercially available Pirkle-type CSPs obtained from N-(3,5-dinitrobenzoyl) derivatives of (R)-phenyglycine or (S)-phenylalanine is described. Some structurally related chiral sulfoxides including oxfendazole (SOFBZ) are also studied. Optimization of the mobile phase nature and composition is investigated showing that a hexane-dioxane-ethanol ternary mixture affords an almost baseline resolution (Rs = 1.25); however, in this case, albendazole sulfone (SO2ABZ) is eluted between the two sulfoxide enantiomers; accordingly, a hexane-ethanol mobile phase would be preferred for biological samples containing both metabolites. The influence of temperature on the resolution is depicted with a hexane-ethanol mobile phase. Finally, application to the enantiomeric assays of SOABZ in plasmatic extracts of rat, sheep, bovin, and man after oral administration of albendazole (sulfoxidized to SOABZ and SO2ABZ) is reported. Some distortions in the enantiomeric ratios are evidenced depending on the species.  相似文献   

13.
In the present study 21 different chiral aminotetralins were used to investigate the mechanism behind their enantiomeric resolution (Rs) on a commercially available high-performance liquid chromatography (HPLC) cellulose tris-3,5-dimethylcarbamate stationary phase. The differences in the chemical structures of the aminotetralins used were never directly located on the chiral carbon. Their chromatographic behavior was studied for two eluent compositions at six different temperatures. Hydrogen bonding and π? π interactions are two possible solute–chiral stationary phase (CSP) interactions. Differences between the enantiomers in their spatial arrangement of positions involved in solute–CSP interactions were the major forces behind enantiomeric separation. Lowering the temperature increased the Rs for the aminotetralins having π-electrons not directly bonded to that part of the molecule where the hydrogen bonding with the CSP is located. Primary amines and secondary amines, with a sufficiently short N-alkyl substituent, showed a decrease of Rs with lower temperatures, all other aminotetralins yielding an increase of Rs with lower temperatures. © 1992 Wiley-Liss, Inc.  相似文献   

14.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    15.
    Brewer BN  Zu C  Koscho ME 《Chirality》2005,17(8):456-463
    The ability to use mixtures of deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors for the determination of enantiomeric composition by electrospray ionization-mass spectrometry is demonstrated. For each experiment, two N-(3,5-dinitrobenzoyl)amino acids were chosen such that each would have opposite selectivity for the enantiomers of the analyte. Electrospray ionization-mass spectrometry, monitored in the negative ion mode, of solutions containing the two N-(3,5-dinitrobenzoyl)amino acids, sodium hydroxide, and the analyte, in a one-to-one mixture of methanol and water, afford peaks in the mass spectrum that correspond to the deprotonated 1:1 analyte-selector complexes. The ratio of the intensities of the complexes in the mass spectrum can be related to the enantiomeric composition of the analyte. Additionally, the sense and extent of chiral recognition is consistent with chromatographic observations, using chiral stationary phases derived from N-(3,5-dinitrobenzoyl)amino acids. Each analysis of enantiomeric composition requires less than 10 s to complete, indicating that this method has great potential for the development of fast-/high-throughput chiral analyses.  相似文献   

    16.
    In this study, an indirect diastereomeric method and a direct method utilizing a chiral stationary phase (CSP) were investigated for the resolution of ibuprofen enantiomers. In the indirect method, ethylchloroformate (ECF) and 2-ethoxy-1-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) were utilized as first-step derivatizing reagents in acetonitrile or toluene. In the direct CSP method, ibuprofen enantiomers were derivatized to p-nitrobenzyl ureides and then resolved on an (R)-(−)-(1-naphthyl)ethylurea CSP column. The derivatization procedure took place in 10 min with an overall inversion efficiency of 90.3%. Racemization was not observed under the derivatization conditions used. The HPLC-CSP method was utilized to study the pharmacokinetics of ibuprofen enantiomers in dog plasma after a single oral administration of 200 mg of ibuprofen racemate.  相似文献   

    17.
    Undecanoyl bound 3,5-dinitrobenzoyl-(S,R)-1,2-diphenylethane-1,2-diamine [(1S,2R)-DNB-DPEDA] as chiral selector (SO) has been synthesized and used as a chiral stationary phase (CSP II) for normal-phase enantioselective HPLC. It is compared with the already published diastereomeric (1S,2S)-DNB-DPEDA-derived CSP I and with the “standard” Pirkle DNB-(R)-phenylglycine-derived CSP III. Chromatographic data for about 100 racemic analytes reveal that CSP II is able to separate especially well enantiomers of derivatized aromatic carboxylic acids and analytes having a benzyl substituent bound at the chiral center. However, CSP I was found to be superior to CSP II and III in its general applicability and its ability to resolve enantiomers of heterocyclic drugs. © 1994 Wiley-Liss, Inc.  相似文献   

    18.
    19.
    A two level full factorial design has been applied to quantify the effect of three selected structural parameters on the capacity factors and chiral separation of atropisomers in N-arylthiazoline-2-(thi)-ones derivatives on tris(p-methylbenzoyl) cellulose beads. The behavior of the two enantiomers is influenced by different factors which might result from different retention sites within the same stationary phase. It appears that the two enantiomers behave independently on the CSP, the order of elution and separation being controlled by a minor steric modification in a very precise location in the molecule for one enantiomer. The methodology of the experimental design allows the comparison of equations generated from data issued from designed compounds. These equations afford much more information than the step by step comparison of individual molecules. In our case, the tris(p-methylbenzoyl)cellulose beads and microcrystalline cellulose triacetate appear as complementary CSPs for the resolution of atropisomers of the series studied. © 1993 Wiley-Liss, Inc.  相似文献   

    20.
    B Kosjek  G Uray 《Chirality》2001,13(10):657-667
    Several brush-type chiral stationary phases (CSPs) based on undecanoyl- or butanoyl-bound (R,R)-1,2-diphenylethane-1,2-diamine (DPEDA) as chiral selector were prepared by an innovative, fast, and less expensive kind of preparation. The key to this method is the immobilization of the enantiomeric pure diamine with only one amino function in a simple substitution reaction on hydroxysuccinimide ester-activated silica. No excess chiral material is lost. Loading can be easily monitored analyzing the filtrate. The free second amino function can subsequently be acylated with different acyl halogenides. Examples with benzoyl- and 3,5-dinitrobenzoyl (DNB) amides show that, based on our new approach, a library of differently acylated Pirkle-type CSPs can easily be obtained. A benzoylated analog of the commercially available ULMO CSP is shown to be very effective in separating enantiomers of N-acyl amino acids.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号