首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of feeding on predatory tactics in a water bug   总被引:1,自引:0,他引:1  
Abstract. The tropical belostomatid Diplonychus indicus Venk. & Rao (Heter-optera: Belostomatidae) forages both actively and from ambush, changing frequently from one predatory mode to the other. Analyses presented here of the influence of feeding and of developmental stage on several locomotory and predatory parameters show that the fact that a bug was eating did not prevent it from reacting to and from seizing prey items, but it did influence the mode of predatory attempts. Feeding bugs were less active and they foraged actively less frequently, but feeding did not affect the frequency of predatory attempts from ambush. No important variations during development were found and first stadium larvae behaved similarly to adults. Capture success rates were higher at all developmental stages during a meal than when a bug was not eating and rejection rates were lower during a meal. These results suggest that, when eating, Diplonychus indicus bugs aim more successfully at prey items they are more likely to capture and to eat.  相似文献   

2.
The predatory behaviour ofDiplonychus indicus Venk. & Rao (Heteroptera: Belostomatidae), a tropical water bug, appeared to be highly versatile. Male adultD. indicus alternated from active foraging to ambushing during the same observation. The predatory movements described here were divided into 7 different categories. Five include ambushing and no active search: simple capture, strike, lunge and strikes following a preliminary vertical or horizontal orientation. Two include active search: dive and swimming bout. Success rates of capture varied with predatory movement category and with predatorprey distance. Attempts including lunges had the highest success rate. Attempts including short lunges, small vertical or horizontal turns or short dives were less likely to be successful than attempts including relatively longer lunges, larger vertical or horizontal turns or longer dives.  相似文献   

3.
Diplonychus indicus is a highly versatile predator that forages both actively and from ambush. However, no correlations between predatory mode changes and predatory performance have yet been evidenced. The hypotheses that time spent foraging actively was proportional to time spent locomotory active and that time spent ambushing was proportional to time spent quiescent were tested during animal development. Locomotory activity increases during development due to increases in both frequency and duration of swimming bouts. The frequency of position changes increases as well. Eggbearing males were less active than other adults. However, the proportion of active foraging did not vary significantly with developmental stage and no correlations between activity level and predatory mode were found. Changes in predatory tactics inDiplonychus indicus differ from those reported in other predators as they are not related to any of the usual biotic or abiotic factors.  相似文献   

4.
An individual ambush predation is used by huntresses of the ponerine ant Ectatomma ruidum to capture halictid bees (Lasioglossum umbripenne) in the Panamanian mountains. Workers, which use this strategy and originated from a colony (A) situated within a nest aggregation of halictid bees, capture almost four times more prey than colony (B) with a foraging area which does not include this type of bee's nest. Forty-eight percent of the prey of colony (A) are halictid bees, demonstrating the local importance of this predatory strategy in E. ruidum. A close examination of the behavioral sequence of predation shows that ambush is successful in only 4.8% of cases, a very low success rate in comparison to other predatory strategies described in this species. Nevertheless, due to the high repetition (16.1 ± 5.9 times on average) of very short waiting phases (6.3 ± 1.9 s), the true success rate (i.e., according to the number of individual trips) can reach up to 80%. A review of ambush predation among ant species allows us to distinguish approaches between jumping, long stealth approaches, and true ambushes. Implications of learning and expectation processes are also discussed.  相似文献   

5.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

6.
The impacts of predators on bee foraging behavior are varied, but have been suggested to depend on both the type of predator (namely their hunting strategy) and also risk assessment by the prey (i.e., ability to perceive predators and learn to avoid them). However, nearly all studies have explored these impacts using social bees, despite the fact that solitary bees are extremely diverse, often specialized in their floral interactions, and may exhibit different behaviors in response to flower-occupying predators. In this study, we examined foraging behaviors of wild solitary long-horned bees (Melissodes spp.) in response to a cryptic predator, the ambush bug (Phymata americana) on the bees’ primary floral host, the prairie sunflower (Helianthus petiolaris). We found sex-specific differences in foraging behaviors of bees, but little evidence that ambush bugs affected either pre-landing or post-landing foraging behaviors. Male bees visited flowers three times more often than females but female bees were five times more likely to land than males. Ambush bugs did not reduce visitation in either sex. Spectral analysis through a bee vision model indicated that ambush bug dorsal coloration was indistinguishable from the disc flowers of sunflowers, suggesting that ambush bugs are indeed cryptic and likely rarely detected by solitary bees. We discuss the implications of these findings for the perceived risk of predation in solitary bees and compare them to other studies of social bees.  相似文献   

7.
Abstract. 1. Adult staphylinid beetles Thinopinus pictus LeC. are noct turnal predators of sand beach amphipods, Orchestoidea califomiana (Brandt). I made continuous observations of Thinopinus near the drift patches on which amphipods feed.
2. Thinopinus alternated between active and ambush foraging modes.
3. Thinopinus had greater attack rates and captured smaller amphipods while in active foraging mode.
4. Thinopinus attacked 0.147 amphipods/min, and captured 9.1% of the amphipods attacked. The attack rate on amphipods increased with the proportion of time spent by Thinopinus in active mode.
5. Thinopinus remained longer near types of drift patches which were more attractive to amphipods.  相似文献   

8.
The response to a novel prey item was investigated during the first month of feeding of the cichlid fish Cichlasoma managuense. The relative contribution of size and age to improvement in predatory behavior was addressed. Group I (control) was fed nauplii of Artemia salina and group II a manufactured flakefood diet. Group II fish were tested for their ability to prey on a novel diet, the nauplii of Artemia salina. Latency to respond to the presence of novel prey decreased and the number of capture attempts increased with increasing experience with the artificial diet and with age. As size increased so did the number of capture attempts, but the latency did not change. Size and experiential and maturational factors may affect parts of the predatory behavior differentially. During the first month of feeding, age may be more important than size for the decrease in latency and the increase in the number of capture attempts. The number of capture attempts during the first 30 s of the observation period and the capture success increased faster than the latency decreased. Latency to respond to novel prey may mature at a slower rate than the number of capture attempts.  相似文献   

9.
Previous work has shown a significant effect of hunger on the predatory behaviour in a sit-and-wait predator Ranatra dispar, the water stick insect (Bailey 1986 a). The experiments reported here were designed to investigate the combined effect of prey size and hunger on the predatory behaviour in order to identify which behavioural components are effected. It was found that the hunger level determines whether R. dispar will initially be aroused or not but the distance at which the arousal takes place is influenced by the size of the prey. This is believed to reflect the capacity and interrelation between visual and mechanoreceptor, sensory organs. The decision to strike at a prey is, although again influenced by hunger, significantly affected by prey size. The distance of the prey when the strike takes place is affected by hunger not the size of the prey. The outcome of the strike is determined by the size of the prey, not the hunger level of the predator. This is believed to reflect the relationship between strike trajectory, leg morphology and prey size. Food deprivation affects all components of predatory behaviour of R. dispar leading up to prey capture, by increasing not only distance of response but also the number of strikes, hits, and captures per unit presentation of prey. It does not affect capture efficiency which remains at about 70 to 80 %. Food deprivation also increases the range of prey sizes that R. dispar responds to and attempts to capture. The effect of food deprivation is considered to reflect a motivational change in responsiveness to particular prey stimuli usually described as a sensitization of particular stimulus-response relations rather than the food deprivation affecting the sensory mechanisms. The predatory success in relation to size of model prey suggested a hypothetical size that could be captured, irrespective of predator motivational level, which is based primarily on the relationship between the shape of the grasping leg and size of prey.  相似文献   

10.
Various foraging modes are employed by predators in nature, ranging from ambush to active predation. Although the foraging mode may be limited by physiological constraints, other factors, such as prey behavior and distribution, may come into play. Using a simulation model, we tested to what extent the relative success of an ambush and an active predator changes as a function of the relative velocity and movement directionality of prey and active predator. In accordance with previous studies, we found that when both active predator and prey use nondirectional movement, the active mode is advantageous. However, as movement becomes more directional, this advantage diminishes gradually to 0. Previous theoretical studies assumed that animal movement is nondirectional; however, recent field observations show that in fact animal movement usually has some component of directionality. We therefore suggest that our simulation is a better predictor of encounter rates than previous studies. Furthermore, we show that as long as the active predator cannot move faster than its prey, it has little or no advantage over the ambush predator. However, as the active predator's velocity increases, its advantage increases sharply.  相似文献   

11.
To investigate the relationship between foraging behavior and life-history traits of the predatory mite Neoseiulus womersleyi, the olfactory responses, dispersal ratios from a prey patch, predation rates, fecundity, and developmental times in eight local populations of N. womersleyi were investigated. Significant differences among local populations were found in all these traits except fecundity. None of the life-history traits correlated with foraging behavior. A significant positive correlation was found only between the olfactory response and the dispersal ratio. These results suggested that predatory mites with low olfactory responses would stay in a prey patch longer than predatory mites with high olfactory responses.  相似文献   

12.
Foraging behaviors exist along a continuum from highly sedentary, ambush foraging, to more continuous searching, or active foraging. Foraging strategies, or modes, are defined based upon locomotor behaviors (e.g. percent time moving, moves per minute). In lizards, traits correlated with ambush and active foraging have been of interest for some time; however, general patterns of correlated evolution between locomotor morphology and locomotor behavior have only recently begun to be quantified. In this study, variation in hindlimb morphology is investigated in a model group of lizard species that vary between active foraging and more sedentary (or mixed) foraging mode. Canonical variates analysis reveals that the two active foraging species occupy similar regions of the morphospace, while the two more sedentary species occupy different regions. The active foraging species have a narrow pelvis with shorter tibia and femora. The more sedentary species have a wide pelvis, long tibia and femora, and slightly longer metatarsals. Phylogenetic patterns of trait variation were examined through ancestral character state reconstruction and show morphological shifts in concert with foraging mode in these species. The observed shifts in locomotor morphology are discussed in light of published data on sprint speed and endurance in these species. Together, the data show that linking morphological variation to variation in stride length and stride frequency is critical to understanding the evolution of locomotor performance. Much more stride length and frequency data are needed among ambush, mixed, and active foraging species because these parameters, and their morphological components, are likely correlated with variation in food acquisition mode.  相似文献   

13.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

14.
Few studies have attempted to determine how physical injury affects predators. One of the ways that physical injury can be expressed is by autotomy or the voluntary loss of a body part. Here, we examined whether the loss of specific legs affects the foraging success of the wolf spider Rabidosa santrita (predator) on another species, Pardosa valens (prey). We also wanted to identify whether the loss of legs in both the predator and prey would impact the outcome of a predation event. Both predator and prey were collected from a creek bed at Portal, AZ, in 2012. Predators were randomly assigned groups where all prey items were intact or all prey had one randomly chosen leg IV removed. Within these groups, predators were organized into a control, leg I autotomy, or leg IV autotomy treatment. All predators had their pre‐ and post‐foraging running speed determined. Predators were introduced into chambers with five prey items and allowed to forage for 1 h. The leg position autotomized or the comparison of pre‐ and post‐foraging trials had no effect on predator running speed. Additionally, there was no significant effect of either predator or prey leg treatment on the total proportion of prey items captured by the end of the foraging trials. Survival analyses indicated that intact prey items tended to have a higher survival rate when predators were missing a leg IV than when predators were intact. When both the predator and prey were missing legs, no significant difference in prey survival rates was detected. We suggest that for predators that inhabit complex, heterogeneous habitats and are classified as ambush predators, the loss of a limb may affect prey capture success, especially when the prey is intact, but that increased sample size is necessary to determine whether this trend is significant.  相似文献   

15.
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations.  相似文献   

16.
We studied the prey stage preference and feeding behaviour of the first to third instar larvae and adult females ofOligota kashmirica benefica Naomi (Coleoptera: Staphylinidae), a predator of the spider miteTetranychus urticae Koch (red form) (Acari: Tetranychidae), on leaves of the kudzu vine (Pueraria lobata (Wild.) Ohwi (Leguminosae)) under laboratory conditions. The number of mites eaten increased with the growth of predator larvae. Third instar larvae preyed on all stages of spider mite, whereas first instar larvae preyed mainly on immobile stages (eggs and quiescent stages). The predator larvae showed two types of foraging behaviour (active searching and ambush behaviour) when targeting the mobile stages (larval nymph and adult stages of prey). Although no difference was found in the number of prey consumed by adult females and third instar larvae of the predator, the adult females mainly attacked and consumed the immobile stages.  相似文献   

17.
Carnivorous mammals use their forelimbs in different ways to capture their prey. Most terrestrial carnivores have some cursorial (running) adaptations, but ambush predators retain considerable flexibility in their forelimb movement, important for grappling with their prey. In contrast, predators that rely on pursuit to run down their prey have sacrificed some of this flexibility for locomotor efficiency, in the greater restriction of the forelimb motion to the parasagittal plane. In this article, we measured aspects of the forelimb anatomy (44 linear measurements) in 36 species of carnivorous mammals of known predatory behavior, and used multivariate analyses to investigate how well the forelimb anatomy reflects the predatory mode (ambush, pursuit, or pounce‐pursuit). A prime intention of this study was to establish morphological correlates of behavior that could then be applied to fossil mammals: for this purpose, five individuals of the recently extinct thylacine (Thylacinus cynocephalus) were also included as unknowns. We show that the three different types of predators can be distinguished by their morphology, both in analyses where all the forelimb bones are included together, and in the separate analyses of each bone individually. Of particular interest is the ability to distinguish between the two types of more cursorial predators, pursuit and pounce‐pursuit, which have previously been considered as primarily size‐based categories. Despite a prior consideration of the thylacine as a “pounce‐pursuit” or an “ambush” type of predator, the thylacines did not consistently cluster with any type of predatory carnivores in our analyses. Rather, the thylacines appeared to be more generalized in their morphology than any of the extant carnivores. The absence of a large diversity of large carnivorous mammals in Australia, past and present, may explain the thylacine's generalized morphology. J. Morphol. 275:1321–1338, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
We studied the prey stage preference and feeding behaviour of the first to third instar larvae and adult females of Oligota kashmirica benefica Naomi (Coleoptera: Staphylinidae), a predator of the spider mite Tetranychus urticae Koch (red form) (Acari: Tetranychidae), on leaves of the kudzu vine (Pueraria lobata (Wild.) Ohwi (Leguminosae)) under laboratory conditions. The number of mites eaten increased with the growth of predator larvae. Third instar larvae preyed on all stages of spider mite, whereas first instar larvae preyed mainly on immobile stages (eggs and quiescent stages). The predator larvae showed two types of foraging behaviour (active searching and ambush behaviour) when targeting the mobile stages (larval, nymph and adult stages of prey). Although no difference was found in the number of prey consumed by adult females and third instar larvae of the predator, the adult females mainly attacked and consumed the immobile stages.  相似文献   

19.
Abstract Many animals autotomize their tails to facilitate escape from predators. Although tail autotomy can increase the likelihood of surviving a predatory encounter, it may entail subsequent costs, including reduced growth, loss of energy stores, a reduction in reproductive output, loss of social status and a decreased probability of survival during subsequent encounters with predators. To date, few studies have investigated the potential fitness costs of tail autotomy in natural populations. I investigated whether tail loss influenced survival, growth and territory occupation of juvenile velvet geckos Oedura lesueurii in a population where predatory snakes were common. During the 3‐year mark–recapture study, 32% of juveniles voluntarily autotomized their tails when first captured. Analysis of survival using the program mark showed that voluntary tail autotomy did not influence the subsequent survival of juvenile geckos. Survival was age‐dependent and was higher in 1‐year‐old animals (0.98) than in hatchlings (0.76), whereas recapture probabilities were time‐dependent. Growth rates of tailed and tailless juveniles were very similar, but tailless geckos had slow rates of tail regeneration (0.14 mm day−1). Tail autotomy did not influence rock usage by geckos, and both tailed and tailless juveniles used few rocks as diurnal retreat sites (means of 1.64 and 1.47 rocks, respectively) and spent long time periods (85 and 82 days) under the same rocks. Site fidelity may confer survival advantages to juveniles in populations sympatric with ambush foraging snakes. My results show that two potential fitness costs of tail autotomy – decreased growth rates and a lower probability of survival – did not occur in juveniles from this population. However, compared with juveniles, significantly fewer adult geckos (17%) voluntarily autotomized their tails during capture. Because adults possess large tails that are used for lipid storage, the energetic costs of tail autotomy are likely to be much higher in adult than in juvenile O. lesueurii.  相似文献   

20.
As the only obligatorily predatory primates, tarsiers are notoriously difficult to keep successfully in captivity. Here we report empirical and experimental results from a 5-year study of behavior and life history in captive Tarsius bancanus. Four reproducing adult tarsiers used space nonrandomly, preferring small-diameter vertical or near-vertical locomotor substrates at midlevel enclosure heights (1.2–2.1 m) for sleeping, scanning, and prey capture. The tarsiers were completely nocturnal, and spent 78% of the scotophase scanning, 13% sleeping, and 9% in prey capture and other activities. Only live crickets were eaten; prey capture rates were highest in the first hour after waking, but overall activity rates were highest later in the scotophase. Adult males and nonpregnant or lactating females ingested approximately 44.7–49.7 kJ/day. Growing and lactating individuals ingested approximately 84.4–94.1 KJ/day. An energetically conservative, sit-and-wait predatory strategy was employed, in which 88% of capture attempts were successful. Most successful prey captures involved reaching for, or leaping from, 90° or 60° supports in a horizontal or downward direction onto prey less than 0.6 m away. Virtually all prey captures were in arboreal locations, despite much higher densities of crickets on enclosure floors. Prey capture rates during the first hour of the nocturnal activity period were positively correlated with arboreal cricket densities. At constant arboreal cricket densities, capture rates were negatively correlated with ambient light intensity, with optimum levels for prey capture ranging from 0.1 to 2.0 Lux. In terms of social behavior, these T. bancanus were nongregarious. Females enforced interindividual spacing by chasing and displacing males. Chase/displacement rates increased significantly during late pregnancy and lactation, apparently in an attempt to keep males from harassing infants. There was no direct male parental care. Infants were precocial at birth, and grew at a rate of 0.35–0.5 g/day, until nutritional weaning at approximately 60 days of age. The implications of specialized predatory morphology and behavior for management are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号