首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of substrate and enzyme concentrations on the rate of saccharification of two defined insoluble cellulose substrates, Avicel (FMC Corp., Philadelphia, Pa.) and Solka-Floc (James River Co., Berlin, N.H.), by the cellulase enzyme system of Trichoderma viride was evaluated. In the assays, enzyme concentrations ranging from 0.004 to 0.016 IU/ml and substrate concentrations up to 10% (wt/vol) were used. Analysis by initial velocity methods found the maximum velocity of saccharification to be nearly equivalent for the two substrates and the Km for the two substrates to be of a similar magnitude, i.e., 0.20% (wt/vol) for Solka-Floc and 0.63% (wt/vol) for Avicel. Studies in which relatively high substrate concentrations (greater than 15 times the Km) were used demonstrated that the enzyme exhibited very different apparent substrate inhibition properties for the two substrates. The rate of saccharification of Avicel at relatively high substrate concentrations was up to 35% lower than the maximum rate which was observed at lower substrate concentrations. The Avicel concentration corresponding to the maximum rate of saccharification was dependent on the enzyme concentration. In contrast to the results with Avicel, the enzyme did not exhibit substrate inhibition with the Solka-Floc substrate. Potential differences in the degree of substrate inhibition with different substrates, as reported here, are particularly relevant to the experimental design of comparative studies.  相似文献   

2.
The influence of substrate and enzyme concentrations on the rate of saccharification of two defined insoluble cellulose substrates, Avicel (FMC Corp., Philadelphia, Pa.) and Solka-Floc (James River Co., Berlin, N.H.), by the cellulase enzyme system of Trichoderma viride was evaluated. In the assays, enzyme concentrations ranging from 0.004 to 0.016 IU/ml and substrate concentrations up to 10% (wt/vol) were used. Analysis by initial velocity methods found the maximum velocity of saccharification to be nearly equivalent for the two substrates and the Km for the two substrates to be of a similar magnitude, i.e., 0.20% (wt/vol) for Solka-Floc and 0.63% (wt/vol) for Avicel. Studies in which relatively high substrate concentrations (greater than 15 times the Km) were used demonstrated that the enzyme exhibited very different apparent substrate inhibition properties for the two substrates. The rate of saccharification of Avicel at relatively high substrate concentrations was up to 35% lower than the maximum rate which was observed at lower substrate concentrations. The Avicel concentration corresponding to the maximum rate of saccharification was dependent on the enzyme concentration. In contrast to the results with Avicel, the enzyme did not exhibit substrate inhibition with the Solka-Floc substrate. Potential differences in the degree of substrate inhibition with different substrates, as reported here, are particularly relevant to the experimental design of comparative studies.  相似文献   

3.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   

4.
The strain of Penicillium janthinellum NCIM 1171 was subjected to mutation involving treatment of Ethyl Methyl Sulfonate (EMS) for 24h followed by UV-irradiation for 3min. Successive mutants showed enhanced cellulase production (EMS-UV-8), clearance zone on Avicel containing plate (SM2) and rapid growth on Walseth cellulose agar plates containing 0.2% 2-deoxy-d-glucose (SM3). These mutants were transferred to Walseth cellulose plates containing higher concentration (1.5%) of 2-deoxy-d-glucose (SM4) in which only five mutants showed clearance zone on SM4. All these mutants showed approximately two-fold increase in activity of both FPase and CMCase in shake flask culture when grown on basal medium containing CP-123 (1%) and wheat bran (2.5%). The enzyme preparations from these mutants were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were obtained with enzyme preparations of EU1. This is the first report on the isolation and selection of mutants based on hydrolysis of Avicel, which is the most crystalline substrate.  相似文献   

5.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

6.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

7.
The kinetics of enzymatic saccharification of ball-milled sugar-cane bagasse, sorghum stubble and peanut shells was studied and their conversions compared. Particle size analyses were performed on the bagasse sample and pure cellulose (Solka-Floc). It was revealed that most of the size reduction of cellulose particle took place between 0 5% conversion. Means of using commercially available ultrafiltration units as continuous-flow membrane reactors to reduce glucose inhibition were tested and compared using Solka-Floc as substrate. It was pointed out that a low conversion CSTR placed between a ball-mill and a hollow-fibre cartridge could reduce the cost of pretreatment and prevent possible blockage of hollow fibres.  相似文献   

8.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

9.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, β-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20–44·5°C and at pH values 5·2–7·4 with optimal growth at 37–41·5°C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5·0, the optimum temperature was 40°C for the endoglucanase and 50°C for the xylanase. Both enzyme activities were inhibited at 70°C. Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

10.
Studies on Cellulose Hydrolysis by Acetivibrio cellulolyticus   总被引:3,自引:1,他引:2       下载免费PDF全文
Acetivibrio cellulolyticus extracellular cellulase extensively hydrolyzed crystalline celluloses such as Avicel (FMC Corp., Food and Pharmaceutical Products Div., Philadelphia, Pa.) but only if it was desalted and supplemented with Ca2+. The Ca2+ effect was one of increased enzyme stability in the presence of the ion. Although preincubation of the cellulase complex at 40°C for 5 h without added Ca2+ had a negligible effect on endoglucanase activity or on the subseqent hydrolysis of amorphous cellulose, the capacity of the enzyme to hydrolyze crystalline cellulose was almost completely lost. Adsorption studies showed that 90% of the Avicel-solubilizing component of the total enzyme preparation bound to 2% Avicel at 40°C. Under these conditions, only 15% of the endoglucanase and 25% of the protein present in the enzyme preparation adsorbed to the substrate. The protein profile of the bound enzyme, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was complex and distinctly different from the profile observed for total cellulase preparations. The specific activity of A. cellulolyticus cellulase with respect to Avicel hydrolysis was compared with that of commercially available Trichoderma reesei cellulase.  相似文献   

11.
A novel Shigella strain (Shigella flexneri G3) showing high cellulolytic activity under mesophilic, anaerobic conditions was isolated and characterized. The bacterium is Gram negative, short rod shaped, and nonmotile and displays effective production of glucose, cellobiose, and other oligosaccharides from cellulose (Avicel PH-101) under optimal conditions (40°C and pH 6.5). Approximately 75% of the cellulose was hydrolyzed in modified ATCC 1191 medium containing 0.3% cellulose, and the oligosaccharide production yield and specific production rate reached 375 mg g Avicel(-1) and 6.25 mg g Avicel(-1) h(-1), respectively, after a 60-hour incubation. To our knowledge, this represents the highest oligosaccharide yield and specific rate from cellulose for mesophilic bacterial monocultures reported so far. The results demonstrate that S. flexneri G3 is capable of rapid conversion of cellulose to oligosaccharides, with potential biofuel applications under mesophilic conditions.  相似文献   

12.
Role of contact in bacterial degradation of cellulose   总被引:1,自引:0,他引:1  
Abstract Bacterial cells can adhere to cellulose fibres, but it is not known if cell-to-fibre contact is necessary for cellulose degradation. This problem was explored using aerobic cellulolytic bacteria, including known species and new isolates from soil. These were tested on plates containing Avicel, Solka floc, CF11 cellulose, carboxymethyl cellulose, or phosphoric acid-treated cellulose. Cellulose degradation was measured both by formation of clearing zones and by growth when cellulose was the only carbon source. The bacteria tested were either inoculated directly on the cellulose-containing agar, or separated from it by a pure agar layer or by membrane filters (not containing cellulose). Even when separated from the cellulose-containing agar all strains grew well. Clearing zones, best seen in phosphoric acid-treated cellulose, were larger under colonies separated from cellulose by an agar layer than under those in direct contact with cellulose. Such zones could also appear under filters. Our results show that bacterial degradation of cellulose does not depend on cell-to-fibre contact and suggest that when cellulose is at a greater distance from the cell, the removal of end products reduces catabolite repression of cellulose formation.  相似文献   

13.
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

15.
Freeze-drying technique preserves the stability of nanoparticles. The objective of this study was optimization of freeze-drying condition of nano lipid carriers (NLCs). NLCs were prepared by emulsion-solvent evaporation followed by ultra-sonication method. Different carbohydrate and polymeric cryoprotectants including Microcelac® (mixture of lactose and Avicel), Avicel PH102 (microcrystalline cellulose), mannitol, sucrose, Avicel RC591 (mixture of microcrystalline cellulose and sodium carboxymethyl cellulose), maltodextrine, Aerosil and PEG4000 were tested initially. The NLCs showing lower particle size growth and greater absolute zeta potential after freeze drying were chosen for further investigation using Taguchi optimization method. Studied factors included cryoprotectant type and concentration, freezing temperatures applied at different time periods and sublimation time. Sucrose, Avicel RC591 and Aerosil were selected as cryoprotectants from initial screening tests. Increasing their concentration increased the particle size. 1% of Avicel RC591, 24 h of freezing at ?70 °C and 48 h sublimation time showed lower growth in particle size.  相似文献   

16.
A selective medium was used to enumerate Clostridium botulinum growing in the presence of natural spoilage organisms in a model cured pork slurry. The growth responses of a mixed spore inoculum of six strains of Cl. botulinum type A were studied at 15 degrees, 20 degrees and 27 degrees C with 1.5, 2.5, 3.5 or 4.5% (w/v) salt added (aw range 0.961-0.990). Gompertz and logistic curves, which have a sigmoid shape, were fitted to the data and lag times, growth rates, generation times and time to maximum growth rates were derived. Variation in germination rates of the spores occasionally gave a falsely extended lag time resulting in an exceptionally high estimate for growth rate. Products containing 4.5% (w/v) NaCl would be capable of supporting growth of proteolytic strains of Cl. botulinum, even at 15 degrees C, although the lag period would be extended. In products where absence of Cl. botulinum cannot be assured additional preservative measures are essential. The information obtained provides a framework to investigate the effects of a wider range of additives or variables on the growth responses of Cl. botulinum.  相似文献   

17.
18.
The development of agar plate screening techniques has allowed the isolation of mutants of Trichoderma reesei capable of synthesizing cellulase under the conditions of a high concentration of glucose. Mutants resistant to catabolite repression by glycerol or glucose were isolated on Walseth’s cellulose (WC) agar plates containing 5% glycerol or 5% glucose, respectively. Mutants resistant to catabolite repression by glycerol were not derepressed enough for the production of cellulase on WC agar plates containing 5% glucose or in flask cultures with a mixture of 1% Avicel and 3% glucose. On the contrary, two mutant strains resistant to catabolite repression by glucose (KDD-10 and DGD-16) produced large clearing zones on WC agar plates containing 5% glucose. Both strains could begin to produce CMCase even in the presence of residual glucose and finally produced 1.5 times the CMCase activity, in flask cultures on 1% Avicel and 3% glucose, than that with 1% Avicel alone. These results suggest that KDD-10 and DGD-16 are comparatively derepressed by glucose for cellulase production.  相似文献   

19.
The production of cellulases from Stachybotrys microspora strain (A19) has been improved by fed-batch fermentation on Avicel cellulose 10 mg/ml. An endoglucanase EG2 was purified to homogeneity. This cellulase has a molecular mass estimated to 50 kDa when analyzed by a denaturant gel electrophoresis. It exhibited an optimal activity at 50 °C, pH 7.0 and 0.85 M NaCl. Specifically, these results show the thermo-active, alkali-tolerant and halo-tolerant properties of EG2. In addition, this endoglucanase showed its highest activity on barley-β-glucan, compared to the CMC. Moreover, it was less active on Avicel cellulose. Furthermore, the EG2 activity was stimulated in the presence of EDTA, urea and β-mercaptoethanol whereas it was reduced in the presence of SDS. This cellulase was highly stable in the presence of organic solvents such as acetone and n-hexane. TLC showed that the main hydrolysis products from EG2 were cellobiose and glucose. This fungal endoglucanase could be potentially important in the conversion of grass-derived biomass into fermentable sugars.  相似文献   

20.
This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and beta-glucosidase) when the cells were grown on 2.0% Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from 83% to 78.5% after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was 70 degrees C for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of 3.2%. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号