首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Floristic composition, diversity, dominance and distribution pattern of species and tree population structure were studied in three stands of a sub-tropical wet hill broad-leaved forest of Meghalaya, India, along a disturbance gradient. Tree species diversity declined with increasing disturbance. Disturbed stands showed low equitability or high dominance and the undisturbed stand exhibited high equitability or low dominance. Contagious distribution among the tree species increased with increasing intensity of disturbance. Species showing regular distribution were restricted only to the undisturbed stand. Effect of disturbance on tree population structure was analysed using density-diameter curves. In the disturbed stands tree species showed reverse J-shaped and/or negative exponential curves, while those in the undisturbed stand exhibited sigmoid to bimodal mound shaped curves.  相似文献   

2.
The shortgrass steppe is co-dominated by two C4perennial grasses, Bouteloua gracilis andBuchloë dactyloides. At our site and throughouteastern Colorado Bouteloua gracilis has higher cover andbiomass than Buchloë dactyloides. We hypothesizedthatthe interaction between seedling recruitment differences and disturbance regimeand tolerance to drought conditions were the most likely causes of the observeddifferences in relative abundances. We used a simulation model to investigatethe relative importance of the three factors. We studied plant biomass of thesetwo species in 18 simulated treatments that resulted from a factorialcombination of seedling recruitment differences, disturbance regime, andtolerance to drought conditions. Analysis of the simulation outputs with ANOVAindicated that biomass of each species responded positively to increases inrecruitment probability. Increasing disturbance frequency favoredBuchloë dactyloides over Boutelouagracills, whereas the susceptibility Buchloëdactyloides to drought favored Boutelouagracilis. The results indicated that differences in droughttoleranceand seedling recruitment probabilities along with their interactions withdisturbance regimes exert a major control on the biomass of the species. In theabsence of or with intermediate disturbance, a higher recruitment probabilityand greater tolerance to drought of Bouteloua gracilisthanBuchloë dactyloides yielded patterns of relativebiomass similar to the patterns observed in the shortgrass steppe.  相似文献   

3.
Grazing and competition are two main factors shaping range plant communities; however, few studies have investigated their interaction. The current study aimed to investigate the effects of defoliation, competition and their interaction on production of annual grasses in semiarid Mediterranean areas. Competition treatments (absence/presence of neighbors) were combined with three defoliation intensities (0%, 30% and 60%) in a complete factorial design. Competition significantly reduced grass biomass. However, the role of competition was eliminated under heavy defoliation or under dry growth conditions. Defoliation showed variable results on final biomass (FB) and cumulative biomass (CB). While heavy defoliation (60% clipping intensity) reduced grass FB down to 80% during the two growing seasons, light defoliation (30%) significantly increased CB. Results showed that competition may limit the direct effect of defoliation on dominant grass species. Further, the relationship between site productivity and competition effect was best explained by a negative linear model. This hypothesized model may suggest that facilitation and competition alternatively affect grassland communities along a productivity gradient. The results suggest that light grazing may sustain or even enhance grassland productivity. The results also indicated the suitability of annual grass species to re-vegetate degraded rangeland in semi-arid climate. Further, optimum grazing practices to conserve biodiversity of Avena grassland may involve moderate stocking rate.  相似文献   

4.
5.
Temperature increasing and precipitation alteration are predicted to occur in arid and semiarid lands; however, the response mechanism of carbon and water exchange at community level is still unclear in semiarid sandy land. We investigated the responses of carbon and water exchanges to warming and precipitation enhancement along a sand dune restoration gradient: mobile sand dunes (MD), semifixed sand dunes (SFD), and fixed sand dunes (FD). The average net ecosystem productivity (NEP) and evapotranspiration (ET) between May and August increased by 98% and 59%, respectively, from MD to SFD, while they had no significant differences between FD and the other two habitats. Warming inhibited ecosystem NEP, ET, and water use efficiency (WUE) by 69%, 49% (p < .001), and 80%, respectively, in SFD, while it nearly had no significant effects in MD and FD. However, precipitation addition by 30% nearly had no significant effects on community NEP, ET, and WUE, except for warming treatment in FD. In general, precipitation addition of 30% may still not be enough to prevent drought stress for growth of plants, due to with low water holding capacity and high evaporation rates in sandy land. Temperature increase magnified drought stress as it increased evapotranspiration rates especially in summer. In addition, community NEP, ET, and WUE were usually influenced by interactions between habitats and temperature, as well as the interactions among habitats, temperature, and precipitation. Species differences in each habitat along the restoration gradient may alter climate sensitivity of sandy land. These results will support in understanding and the prediction of the impacts of warming and precipitation change in semiarid sandy grassland.  相似文献   

6.
生物多样性分布格局与维持机制即群落构建机制,是群落生态学研究的热点领域。微生物生态学中的一个关键问题是量化确定性过程和随机过程对微生物群落构建的相对贡献。尽管原生生物是土壤微生物群落中重要的组成部分,在微生物食物链中扮演着关键角色,但与细菌和真菌相比,目前对原生生物群落构建机制知之甚少。运用Illumina Miseq高通量测序技术,分析了五台山亚高山草地生态系统(海拔2000-3061 m范围内)土壤原生生物群落组成和多样性维持机制。结果表明,四个海拔梯度的土壤共获得有效序列520673条,分属于8个超群、24个门、65个纲、125个目、222个科和350个属。门水平上,丝足虫门(Cercozoa)、褐藻门(Ochrophyta)、纤毛门(Ciliophora)和顶复门(Apicomplexa)为主要优势类群。LEfSe分析显示,17个生物标志物对海拔梯度非常敏感,不同海拔梯度富集了不同的原生生物种群。尽管海拔对土壤原生生物群落的α多样性没有显著影响,但非度量多维尺度分析(NMDS)和相似性分析(ANOSIM)结果表明,原生生物群落组成和结构在海拔梯度上存在显著的差异(P<0.05)。冗余分析(RDA)显示海拔、土壤含水量、总氮和植物丰富度指数与原生生物群落结构存在显著相关性(P<0.05)。方差分解分析(VPA)和偏Mantel分析表明环境因子和空间变量对原生生物群落海拔分布格局均有显著影响,但是环境因子的相对作用(7.9%)明显大于空间变量(1.8%)。土壤原生生物群落之间的Bray-Curtis距离与海拔距离呈显著正相关关系(P<0.05),说明选择过程可能是亚高山草地土壤原生生物群落分布格局的主要驱动因素。零模型分析进一步证实了确定性过程在原生生物群落构建中的相对作用大于随机过程。总之,五台山亚高山草地土壤原生生物群落组成和结构沿海拔梯度具有显著的变化格局,群落构建主要由确定性过程和随机过程驱动,但确定性过程占主导地位。  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号