首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two sediment cores up to 42 m in length were raised from the wide, deep, section of the lower Tapajós River, Amazonia, referred to as Lago Tapajós. These cores reveal a history of subtle environmental change that began with the formation of Lago Tapajós as sea level rose about 11,000 years ago. The sediments of the lake were deposited fairly quickly—at a rate of ca. 4 m per millennium and are uniformly fine grained, with low organic content. The fossil pollen record derived from these sediments reveals that forest surrounded this site throughout the Holocene. The largest change in the core took place between ca. 5500 and 4200 cal. years BP and reflects a transition from coarser to finer sediments. Coincident with the change in sediment is a slight transition in the pollen spectra with an increase in Poaceae abundance at the expense of the pioneer tree Cecropia cecropia. A tentative explanation is offered in which increased human activity, possibly spurred by climatic change, resulted in the formation of some local grasslands. However, despite the apparent actions of humans, there is no indication of basin-wide transformation of landscapes in this record. The Holocene persistence of forest as the dominant landscape matrix around Lago Tapajós is supported by low δ13C values and by the constant geochemistry and mineralogy of the lake sediments.  相似文献   

2.
Aim The main goal of this study was to investigate how climate and human activities may have influenced ecotonal areas of disjoint savannas within Brazilian Amazonia. Location Eastern Brazilian Amazonia, Amapá State. Methods The fossil pollen and charcoal records of two lakes in Amapá (Marcio and Tapera) were used to provide a Holocene palaeoecological history of eastern Amazonian savannas. Detrended correspondence analysis was used to enhance the patterns of sample distribution along the sediment core. Results Even though sedimentary hiatuses were recognized in the sediment cores from both lakes, a marked change in vegetation from closed forests with swamp elements to open flooded savanna at c. 5000 yr bp was evident from the pollen record. Charcoal analysis revealed a pattern of increased accumulation of charred particles coincident with the establishment of savanna vegetation, suggesting higher fire frequency near the lakes. Because the timing of the sedimentary hiatus overlapped with the highest Holocene sea level, which would have increased the local water table preventing the lakes from drying out, we infer that both lakes used to depend heavily on flood waters, and the sedimentary gap was caused by reduced discharge from the Amazon River, due to a dry period in the Andes, when precipitation levels markedly decreased between 8000 and 5000 yr bp . The lack of Andean pollen (probably river transported) in the sediment record after this event and the existence of similar records near the study site make this interpretation more appealing. The resumption of sedimentation in Lake Marcio, contemporaneous with falling sea level and increasingly wet conditions in the Andes after 5000 yr bp , indicates that Holocene sea‐level variation did not play an important role in maintaining lake levels. Main conclusions The study site recorded long‐term occupation by pre‐Columbian peoples. However, it is still unclear whether these disjoint savannas have an anthropogenic origin. Even though locally dry environmental conditions were inferred from both records, there is no evidence of a mid‐Holocene dry climate in eastern Amazonia. Instead, the Amapá record indicates a connection between Andean climate and eastern Amazonia, demonstrating the need for a better understanding of the impacts and magnitude of climate changes.  相似文献   

3.
Reconstruction of past climate change and ecosystem response is important to correctly assess the impacts of global warming. In this study, we provide a paleoenvironmental record of in-lake and catchment changes in northern Poland during the Late Glacial and early Holocene using various biotic proxies (pollen, macrofossils and Cladocera) preserved in the lake sedimentary record. Chronology was derived from palynological correlation with a well-dated pollen sequence from nearby-lying Lake Ostrowite and some well-dated events of vegetation history in Central Europe. Pollen analysis provided information on regional climate change affecting vegetation dynamics, whereas macrofossils supplied substantial information on the response of local flora and fauna to climatic, geomorphological and limnological changes. Data were supplemented by analysis of Cladocera remains, which are of special importance because of their quick response to changes in trophic conditions and climate (especially temperature). The bottom of the sediment core reflects an initial stage of the lake formed during the late Aller?d. The Younger Dryas cooling apparently resulted in forest recession and presence of cold tolerant Cladocera species. Due to amelioration of climate at the end of the Younger Dryas and melting of ice, the lake deepened. The beginning of the Holocene was characterised by forest shrinkage and induced clear changes in local flora and fauna communities. The regional vegetation development deduced from the lake’s core is generally consistent with the vegetation history of central Europe. Due to the location of the site near the seashore (oceanic climate and western wind), signals of warming came earlier than inland and in eastern Poland.  相似文献   

4.
对Vychegda河流域靠近Baika村(61°16'N,46°44'E)洪积平原的一个剖面进行了孢粉学研究.化石点位于泰加林带中部,靠近欧洲云杉林和亚乌拉尔-西伯利亚云、冷杉-西伯利亚松林界限附近.该河流盆地森林覆盖率高达98%.根据放射性碳年代测定,沉积涵盖了全新世大约自9000 yrs B.P.以来的大部分地层.主要运用化石植物群组成来恢复这一地区全新世以来的植被和气候变化,通过某些化石植物群的全部植物种类的现代地理分布的分析,可以发现与过去植被最接近的现代对应植被类型的位置,通过确定所有植物种现代生长地区的景观和气候来推测与古环境最接近的景观和气候.整个孢粉组合序列中云杉、松和桦占统治地位,但是植物群的成分和植被有变化.暖温带树种,如椴、榆及栎等在森林中的含量有变化,在全新世最暖期,相当于中晚大西洋期(6000-4500 yrs B.P.)达到最高.这些变化通过对应的现代植物群在俄罗斯平原的"迁移"反映出来,从中、南乌拉尔向西至Sukhona河盆地然后再返回到研究区的Vychegda河下游.运用古植物群的方法定量恢复的主要气候指标表明在大西洋期7月份月均温比现代高2.5℃,1月份月均温比现在高出1℃,年降雨量和现在接近.这段时间可以认为是本地区全新世的气候最适宜期.  相似文献   

5.
Aim The research aim is to reconstruct last glacial maximum (LGM) and Holocene vegetation history and ecology from fossil beetle assemblages. Location The LGM and Holocene sites are located in the Awatere Valley, which lies in the tectonically active Marlborough Region in the north east of the South Island of New Zealand. Methods Beetle fossils were extracted from silty organic sediment using the standard kerosene flotation method. Fossils were identified by comparisons made to modern species based on morphology and surface features. The ecology and distribution of modern analogues are extrapolated to reconstruct the fossil environment. Results One hundred and forty‐five beetle species belonging to 33 families were identified. The LGM fossil fauna showed the local vegetation was characterized by a forest patch surrounded by an open tussock/grassland landscape. This Nothofagus (southern beech) forest persisted at the site until mid‐Holocene when it was replaced by a podocarp forest that contained high beetle diversity. Herbivores dominate in the early stage of this zone, indicating a relatively new forest environment. Later in the Holocene, the fauna is dominated by detritivores indicating an older more established forest. The late Holocene is characterized by low diversity and the absence of forest species. This fauna indicates that by 500 years ago, the forest was absent and is associated with an almost compete loss of beetle biodiversity. Main conclusions The fossil beetles provide a unique perspective into the past environment in the Awatere Valley on a local scale. The reconstruction supports regional pollen interpretations of Holocene vegetation by identifying a specific forest patch. Fossil beetles are thus a valuable local proxy for vegetation reconstructions.  相似文献   

6.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   

7.
Aim To use surface pollen and vegetation relationships to aid the interpretation of a Holocene pollen record. Location South‐west Tasmania, Australia. Methods A survey was undertaken of surface‐pollen samples from the major regional vegetation types: alpine, rain forest and moorland. Relationships between vegetation type and surface‐pollen representation were analysed using twinspan classification and ordination. A core was retrieved from moorland vegetation, and interpretation of the fossil pollen sequence was aided using relationships detected in our surface‐pollen analysis. Results Regional vegetation types are reflected in the pollen rain of south‐west Tasmania, despite the over‐representation of important rain forest tree species in samples from non‐forest sites. twinspan classification of the surface‐pollen samples identified the following indicator pollen taxa for each vegetation type: Astelia alpina (alpine); Lagarostrobos franklinii (rain forest); Leptospermum and Melaleuca (moorland). Detrended correspondence analysis of the surface‐pollen samples clearly separates samples from each vegetation type. Correlation of the ordination axes with environmental data identified a dominant temperature/altitudinal gradient in the surface‐pollen data (R = 0.852/0.844). Application of the results of the surface‐pollen analysis to the fossil sequence revealed that fire‐promoted moorland has dominated the local environment around the core site for the entire Holocene. Changes in fossil pollen composition also suggest that temperatures increased through the Late Glacial to peak in the mid‐Holocene and declined thereafter, a trend consistent with other sites in the region. Main conclusions Pollen spectra can successfully be used to predict local vegetation in south‐west Tasmania. At least this part of inland south‐west Tasmania has remained forest‐free throughout the Holocene, conflicting with the dominant palaeoecological paradigm of a mid‐Holocene dominated by rain forest. A comparison with pollen records from moorland vegetation across the region suggests that fire‐promoted moorland has dominated the landscape since the Late Glacial. We suggest that burning by people through the Late Glacial (if not earlier) facilitated the spread of moorland throughout the region, greatly restricting the expansion of rain forest. The continued influence of fire throughout the Holocene in this perennially wet landscape argues for a revision of the dominant human‐occupation model that depicts an abandonment of the interior of south‐west Tasmania in the Late Glacial in response to the expansion of rain forest.  相似文献   

8.
Two sediment cores from the eastern coastal region of Marajó Island, Pará State, northern Brazil have been studied by pollen analysis to reconstruct late Holocene mangrove dynamics and environmental changes. Seven AMS radiocarbon dates provide time control. Mangrove vegetation became established at the Barra Velha site at about 2750 B.P. (2880 cal B.P.) and at the Praia do Pesqueiro site at about 650 B.P. (670 cal B.P.). Rhizophora was the dominant mangrove tree throughout the recorded period, while Avicennia and Laguncularia were rare. Existing remnants of the former coastal Amazon rain forest were replaced by mangrove in the Barra Velha area between about 2750 and 740 B.P. (2880–760 cal B.P.) and at Praia do Pesqueiro area between about 650 and 530 B.P. (670–540 cal B.P.), suggesting a rise in relative sea level or, alternatively, an increase in discharge from the river Amazon. Areas of coastal shrub and herb vegetation, the so-called restinga vegetation, also became slightly reduced during the late Holocene. The largest area of mangrove at the two sites suggests that the highest sea level was probably reached during the last 200–250 years. The only evidence of human activity at the two sites is an indication of cattle pastureland at the Barra Velha area during the last decades.  相似文献   

9.
Vegetational and coastal environmental changes have been interpreted from a 600cm long and 764014C yr B.P. old sediment core from Lago Crispim located in the northeastern Pará State in northern Brazil. The radiocarbon dated sediment core was studied by multi-element geochemistry, pollen and charcoal analysis.Holocene Atlantic sea-level rise caused an elevation of local water table, which allowed the formation of organic deposits in a probably former inter-dune valley. Dense, diverse and tall Amazon rain forest, and some restinga (coastal vegetation) covered the study area at the beginning of the record at 764014C yr B.P. Mangrove vegetation developed along rivers close to the core site at that time. Subsequent decrease in less mangrove vegetation near the study site indicates a sea-level regression, beginning since around 700014C yr B.P. Lower sea-levels probably favoured the formation of a local Mauritia/Mauritiella palm swamp at 662014C yr B.P. Oscillations of higher and lower sea-level stands probably changed the size of the local palm swamp area several times between 6620 and 363014C yr B.P. Sea-level transgression at around 363014C yr B.P., caused marked coastal environmental changes: the development of mangroves near the site, the replacement of the local palm swamp by a Cyperaceae swamp, the substitution of the surrounding former Amazon rain forest and some restinga vegetation mainly by salt marshes. High amount carbonised particles suggest a strong human impact by burning on the coastal ecosystems during this late Holocene period.Highest concentrations of NaCl and also Ca, Mg and K in the upper sediment core indicate that the Atlantic was close during the late Holocene period. The core site, which is today 500m from the coastline and only 1-2m above modern sea-level, was apparently never reached by marine excursions during the Holocene.Less representation of mangrove since ca. 184014C yr B.P., may be related due to a slightly lower sea-level or to human impact in the study region. The modern shallow lake seems to be formed recently by road construction, forming an artificial dam.  相似文献   

10.
A 50 m-long radiocarbon dated core was studied through sediment and pollen analysis to reconstruct the Holocene mangrove and environmental changes at a coastal site Pakhiralaya in the Sundarban Biosphere Reserve in the western Ganga–Brahmaputra Delta, India. This biosphere reserve harbours a diverse mangrove ecosystem and supports a large number of people living in the area. Pollen and stratigraphic data indicate the existence of a brackish water estuarine mangrove swamp forest in this area during the last 9880 cal yr b.p. The development of the mangrove forest is not shown continuously in the Holocene record. Rapid transgression of the sea (9240 cal yr b.p.) halted the development of the mangrove. After about 8420 cal yr b.p. mangrove recolonised the area and persisted until 7560 cal yr b.p. as a result of a balance between the sedimentation and sea level fluctuation. The mangrove disappeared again from the site until 4800 cal yr b.p. because of a high sedimentation rate and possible delta progradation with loss of habitats. The reappearance of mangrove at the study site occurred with a return of a brackish water estuarine environment and the site then gradually became supra tidal during the mid-late Holocene. The continuity of the mangrove development and dynamics was interrupted by the fluctuating sea levels. Climatic fluctuations were viewed as an indirect factor influencing the mangrove ecosystem.  相似文献   

11.
Two sediment cores sampled from a varzea (N 02°34′38′′, W 50°53′17′′) and mangrove area (N 02°35′59′′, W 50°52′08′′) in Amapá littoral, northern Brazil, were studied through pollen and spectrophotometric analysis in order to compare biological and chemical signals of mangrove vegetation recorded by sediments during the late Holocene. According to the pollen study, probably the core base (145–65 cm) of varzea vegetation accumulated sediments devoid of vegetation. Later, this site was dominated by herbaceous vegetation and it concluded with a varzea forest. Based on spectrophotometric analysis, this core did not present significant tannin concentrations. This is likely due to the mangrove absence during the vegetation development at this site. The core sampled from a mangrove area also presented a relationship between palaeovegetation and the sediment biogeochemistry. However, the mangrove core presented significant tannin content along the mangrove phases. Thus, this spectrophotometric method supported by the pollen data may be considered as a complementary tool to identify palaeomangrove deposits.  相似文献   

12.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

13.
Aim To investigate the palaeoecological changes associated with the last ice age, subsequent deglaciation and human occupation of the central Andes. Location Lake Pacucha, Peruvian Andes (13°36′26″ S, 73°19′42″ W; 3095 m elevation). Methods Vegetation assemblages were reconstructed for the last 24 cal. kyr bp (thousand calibrated 14C years before present), based on pollen analysis of sediments from Lake Pacucha. An age model was established using 14C accelerator mass spectrometry dates on bulk sediment. Fossil pollen and sedimentological analyses followed standard methodologies. Results Puna brava replaced the Andean forest at the elevation of Lake Pacucha at the Last Glacial Maximum (LGM). Deglaciation proceeded rapidly after 16 cal. kyr bp , and near‐modern vegetation was established by c. 14 cal. kyr bp . The deglacial was marked by the range expansion of forest taxa as grassland taxa receded in importance. The mid‐Holocene was marked by a lowered lake level but relatively unchanged vegetation. Quinoa and maize pollen were found in the latter half of the Holocene. Main conclusions Temperatures were about 7–8 °C colder than present at this site during the LGM. The pattern of vegetation change was suggestive of microrefugial expansion rather than simple upslope migration. The mid‐Holocene droughts were interrupted by rainfall events sufficiently frequent to allow vegetation to survive largely unchanged, despite lowering of the lake level. Human activity at the lake included a 5500‐year history of quinoa cultivation and 3000 years of maize cultivation.  相似文献   

14.
Palynological and charcoal fragment analyses of Guanabara Bay sediments, as well as radiocarbon dating, were carried out on one 220 cm long sedimentary core collected from the northeast sector of the bay, near the São Gonçalo coast. This study aims at recognising and explaining the environmental history of this region during the mid-Holocene, and to identify the anthropogenic influences on it. The palynological data indicate the predominance of ombrophilous forest vegetation in the Guanabara Bay Hydrographic Basin at c. 6500 calendar years bp. During this period (pollen zone 1), the concentrations of pollen grains and spores may still have been controlled by the Holocene Maximum Transgressive Event. After a phase of low concentrations of palynomorphs, there was a considerable increase in the accumulation patterns of pollen and spore grains (pollen zone 2). This increase can probably be related to the retreat of the sea level event after the Holocene Maximum Transgressive Event. The 75 cm of the core top (pollen zone 3) provide clear evidence of human influence in the area, which is inferred from the significant reduction in ombrophilous forest pollen grains, the significant increase in herbaceous pollen grains, the presence of exotic pollen types (Eucalyptus and Pinus), and high concentration of carbonaceous particles.  相似文献   

15.
Aim To provide insights concerning changes in fire regime in north‐eastern Cambodia over the course of the Holocene, and discuss implications of these long‐term data for fire management in the present day. Location Southern Ratanakiri Province, north‐eastern Cambodia. The lake sites sampled here are embedded in a mosaic of mostly open, strongly deciduous dipterocarp forest, with patches of riparian, semi‐evergreen and evergreen forests. Methods Background information on the environmental and cultural setting comes from informal and semi‐structured interviews of local villagers to determine present‐day burning patterns and customs. Primary data come from analysis of changes in charcoal concentration within sediments from small, closed basin lakes. Charcoal data are compared with changes in pollen and sediment physical characteristics, and to present‐day local customs, to infer or speculate on changes in human use of fire. Results Interviews with local people reveal two general types of human‐induced fires, one type for swidden cultivation in denser forests, the other type for clearance of ground layer vegetation in more open forests. A 9300‐year sediment record of microscopic charcoal deposition shows strongest fire activity ending by 8000 years ago, and the remainder of the early Holocene reflecting a strong summer monsoon and low fire activity. Beginning c. 5500 years ago, forest disturbance and fire activity increased. A subtle change in the record at c. 3500 years ago and more marked change at c. 2500 years ago suggest that fire frequency, and maybe human control over fire, became more important during that period and continuing up to the present. Main conclusions With this type of empirical data from only one site, it is impossible to make accurate conclusions about long‐term human impacts from burning. However, this record does show that present‐day charcoal input from fire activity is among the lowest for the last 9300 years. Considered together with other changes in the record and with present‐day customs, there is a suggestion that anthropogenic fire is an adaptation to the monsoonal environment, and may be conservative of forest cover in open forest formations. This long‐term perspective on the role of indigenous land‐use customs in landscape evolution should be considered in forest management and biological conservation, as it differs significantly from the traditional rationale for policies of fire suppression in tropical forests.  相似文献   

16.
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.  相似文献   

17.
Holocene mangrove dynamics are reconstructed from pollen, sediment and radiocarbon analyses of three cores (ANR, BNR, CNR) located across a 20 km transect in the Rufiji Delta, Tanzania. At the base of the sediment sequence, dated to about 5600 cal. year b.p., the mangroves which are present suggest a low intertidal ecosystem in response to wet conditions and a higher sea level than at the present day. After around 5600 cal. year b.p. in core BNR, mangroves retreated seaward probably due to a lower sea level and drier environmental conditions. At around 4640 cal. year b.p., mangroves shifted landward suggesting a phase of sea level rise. In the late Holocene, mangroves became established at higher elevations of the Rufiji Delta, which is now a paddy field. Mangrove taxa decreased after 1170 cal. year b.p., suggesting drier conditions and less inundation frequency, possibly due to a lower sea level. Marked vegetation changes from mangroves to terrestrial vegetation occurred after around 750 cal. year b.p., possibly related to sea level regression and/or a desiccation phase recorded during the late Holocene. Paddy fields replaced mangroves in the landward part of the transect, reflecting an increase in human settlement in this area, a trend that continues to the present day. The recent decrease of mangrove species, particularly Rhizophora mucronata, could suggest less inundation by saline water and a lower sea level, although these changes may also be due to human activities during the last millennia as indicated by charcoal analysis.  相似文献   

18.
The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.  相似文献   

19.
A sequence of six Holocene peats in a river terrace in Páramo de La Culata was studied and compared with present-day peat deposits. The pollen analysis has shown that this region has been a humid páramo since about 7500 years B.P. At about 6000 years ago, pollen-rain input greatly decreased, reflecting poor local and adjacent vegetation. This is interpreted as representing a lowering of the average temperature of the region during a short time.  相似文献   

20.
A 450 cm sediment core from Taperebal, in the mangrove region of northeastern Pará State in northern Brazil has been studied through pollen analysis in order to reconstruct mangrove development and dynamics and to infer relative sea-level (RSL) changes during the Holocene. Six AMS radiocarbon dates, which provide a somewhat limited age control with some uncertainties, suggest early and late Holocene deposits interrupted by a hiatus between them. A patchy vegetation of coastal Amazon rain forest, restinga, salt marsh and some mangrove, which was dominated by Avicennia, covered the study area during the early Holocene period. The occurrence of an early Avicennia dominated mangrove phase has not been reported so far from other sites in northern Brazil. During the mid Holocene mangroves mostly replaced the former coastal Amazon rain forest, restinga and some salt marsh vegetation, reflecting the rise in the RSL. Rhizophora trees expanded markedly and Avicennia became rare. In the sediment core there is apparently a gap between the depths of 115 and 85 cm (possibly starting between 5900 and 5750 b.p.). The deposits above 85 cm are of modern age and were probably deposited during the last decades. This gap can be explained by the lowering of the RSL as is shown for other northern Brazilian coastal sites. The deposition of sediments during the last decades suggests that the modern RSL is high compared to other periods in the Holocene. Pollen data from these deposits show that Rhizophora trees dominate the mangrove forests, also indicating a high RSL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号