首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oyster mushroom cultivation with rice and wheat straw   总被引:12,自引:0,他引:12  
Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.  相似文献   

2.
Pleurotus species are found to be among the most efficient lignocellulolytic types of white-rot fungi. Rice is the main grain cultivated in the extreme south of Brazil. Defatted rice bran and straw are by-products of low aggregate value. Soft rush (Juncus effusus) is a common native plant also very abundant in the region. In the present work, we evaluated changes in substrate composition after growth of two white-rot fungal species: Pleurotus ostreatus and Pleurotus sajor-caju, aiming to increase protein content and digestibility from substrates through solid fermentations and obtain edible mushrooms of high aggregate value. For that, defatted rice bran, defatted rice straw and soft rush were utilized as substrate. The influence of the variables thermal treatment temperature of substrate, substrate moisture and concentration were evaluated on the protein content, digestibility and biological efficiency. The highest protein enrichment of rice bran in P. sajor-caju-fermented medium was due the fact that there was no fructification in these media, while for the P. ostreatus-fermented medium, part of the synthesized protein was converted into mushrooms. The highest protein enrichments were verified in medium with 80% moisture and 25% soft rush (47.1% using P. ostreatus and 49.0% using P. sajor-caju). A higher digestible protein increase was obtained for both species in media with 70% moisture and 25% soft rush.  相似文献   

3.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than alpha-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

4.
Mycelial growth, intracellular activity of proteases, laccases and β-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.  相似文献   

5.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

6.
In this study, shrimp shell powder, prepared by treating shrimp-processing waste by boiling and crushing, was used as a substrate for isolation of chitinase-producing microorganism. These organisms may have an important economic role in the biological control of rice and other fungal pathogens. Two hundred strains of bacteria with the ability to degrade chitin from shrimp shell waste were isolated from paddy soil, and of these, 40 strains showed chitinase activity in a solid state cultivation. One of the most potent isolates (strain R 176) was identified as Bacillus thuringiensis. Identification was carried out using morphological and biochemical properties along with 16S rRNA sequence analysis. This strain was able to produce high levels of extracellular chitinase in solid media containing shrimp shells as sole carbon source [1.36 U/g initial dry substrate (IDS)], which was 0.36-fold higher than the productivity in a liquid culture with colloidal chitin. The effects of medium composition and physical parameters on chitinase production by this organism were studied. The optimal medium contained shrimp shell mixed with rice straw in 1:1 ratio added with ball-milled chitin 0.5 % (w/v) and ammonium sulfate 0.5 % (w/v). The highest enzyme production (3.86 U/g IDS) by B. thuringiensis R 176 was obtained at pH 7, 37 °C after 14 days growth. With respect to the high amount of chitinase production by this strain in a simple medium, this strain could be a suitable candidate for the production of chitinase from chitinous solid substrates, and further investigations into its structure and characteristics are merited.  相似文献   

7.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《Biological Wastes》1989,27(2):87-100
Wheat straw filaments attacked by Pleurotus ostreatus under different nutritional conditions were examined by transmission and scanning electron microscopy; their resistance to traction was determined by a ring dynamometer.Micromorphology and mechanical properties of the filaments were consistent with a mechanism of fungal attack subdivided into two steps, the first dominated by hyphal growth on the soluble components present in the straw or supplemented with the medium, and the second during which lignocelluloses are degraded at a rate related to the amount of biomass produced during the first stage and to the nutrients left in the medium.  相似文献   

9.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Fungal (acetate-in-ergosterol incorporation) and bacterial (leucine/thymidine incorporation) growth resulting from alfalfa (C/N=15) and barley straw (C/N=75) addition was studied in soil microcosms for 64 days. Nitrogen amendments were used to compensate for the C/N difference between the substrates. Fungal growth increased to a maximum after 3–7 days, at five to eight times the controls, following the addition of straw, and three to four times the controls following the addition of alfalfa. After 20–30 days, the fungal growth rate converged with the controls, resulting in a cumulative fungal growth two to three times the controls following straw addition and about 20% higher than the controls following alfalfa addition. The bacterial growth rate reached rates five times the controls following alfalfa addition and twice that of the controls following straw addition after 3–7 days. It remained elevated after 64 days. The cumulative bacterial growth was two and four times the controls following straw and alfalfa addition, respectively. A negative correlation was found between N addition and bacterial growth, while N stimulated fungal growth. Thus, the C/N ratio of the additions (substrate and extra N) could not entirely explain the different results regarding fungal and bacterial growths. Respiration was not always related to the combined growth of the microorganisms, emphasizing the requirement for a better understanding of growth efficiencies of fungi and bacteria.  相似文献   

11.
Large scale production of the rice moth, Corcyra cephalonica Stainton in pearl millet grain medium leads to a huge accumulation of spent larval medium in commercial insectaries. We attempted bioconversion of spent larval medium of C. cephalonica (CLM) for cultivation of the mushroom Pleurotus sajor-caju (Fr.) Singer, to increase the usage of these residues. Maximum efficiency limits of CLM for spawn run, sporophore cropping and as bed substrate were assessed with varying combinations of sorghum and rice straw. Sorghum grains and rice straw were the best substrates for spawn run and sporophore yield respectively. Having been crushed, macerated, heated and sterilized, CLM could also become a suitable substrate along with sorghum or rice straw. Sorghum and CLM at 16.7% + 83.3% and 33.3% + 66.7% combinations were very effective in supporting mycelial growth and quicker colonization of fungus, and mother spawn yield. The spawn that was obtained from these combinations yielded higher sporophore as well. The fungus did not rapidly colonize on other combinations (50% + 50%, 66.7% + 33.3% and 83.3% + 16.7%), and was completely unable to grow on CLM 100%. Combination of rice straw and CLM at 75% + 25% and 50% + 50% as bed substrate contributed higher sporophore yield. Analysis of the substrates indicated variation in their chemical and mineral composition, but they were good sources of N, P and Ca. The prospects of exploring CLM for the mushroom cultivation are discussed.  相似文献   

12.
In this study, sampling was carrid out on soils around pistachio trees in various regions of Rafsanjan, Iran. Following isolation and identification of Phytophthora isolates, the predominant species was found to be P. drechsleri and used for further investigation. For studying saprophytic survival of the fungus, soils collected from different areas were combined and autoclaved. Sterile soil was divided into 10 parts and mixed with fungal inoculum at various concentrations of 0-9% (w/w) separately. Each soil part (100g) was placed in 15cm diameter plastic pot. Some soils in pots were supplemented with sterile wheat straw whereas others were mixed with pistachio leaves surface sterilized with 5% (v/v) sodium hypochlorite. After 3, 6 and 9 weeks of incubation, five leaves or straws samples were taken from each replicate and cultured on CMA-PARPH medium and the fungal colony formation was monitored. The experiment was performed using completely randomized design with factorial experiments including three factors (substrate type, inoculum density and time), 10 treatments (0-9 g inoculum levels) and nine replicates. The results showed that the type of substrate (wheat straw and pistachio leaf) was very important for the fungal saprophytic survival in that this was significantly greater for the pistachio leaves. Time was also considered another critical factor for the fungal survival. With passing incubation time, saprophytic survival of the fungus declined. Further, it was demonstrated that increasing inoculum density would result in longer survivability of P. drechsleri and maximum fungal survival on substrate was obtained when inoculum density was at 9% (w/w).  相似文献   

13.
The effect of different strains of the ectomycorrhizal fungus Hebeloma cylindrosporum on rooting in vitro and acclimatization of micropropagated cuttings of Pinus pinaster and Pinus sylvestris was studied. Two clones of P. pinaster and one of P. sylvestris were unable to root in the absence of auxin, but were induced to root on a medium devoid of auxin by all the fungal strains. Wild-type and indoleacetic acid (IAA)-overproducing mutant strains of the fungus stimulated rooting of clones showing a good reactivity to auxin to the same extent. In contrast, with a clone of P. sylvestris that showed low reactivity to auxin, IAA-overproduction by the fungus was advantageous for the induction of rooting of cuttings. Adventitious roots formed in the presence of a fungal strain were completely surrounded by a loosely packed network of hyphae which formed mycorrhizas as soon as roots grew outside the agar medium. During acclimatization, fungal inoculation improved the survival of rooted cuttings. At the end of acclimatization, fungal mycelia could be easily detected in the culture substrate of cuttings inoculated with dikaryotic strains and most of the pines' short roots were mycorrhizal. Monokaryotic mycelia, which have a lower growth rate and a lower infectivity, displayed poor ability to colonize the substrate and to form mycorrhizas. Two months after the end of acclimatization, fungal inoculation frequently depressed the growth of acclimatized cuttings of the clone J of P. pinaster . No depressive effect was observed with clone 78 and growth stimulation could even be observed with the infective dikaryon D1 which formed numerous mycorrhizas. From these studies, it was concluded that ectomycorrhizal fungi could be a suitable tool for improving rooting in vitro and survival at acclimatization of micropropagated conifer cuttings.  相似文献   

14.
Baroglio C  Bosco F  Specchia V 《Microbios》2000,103(406):163-177
The ability of the ectomycorrhizal fungus Suillus grevillei (Klotzsch) Singer to grow in agitated submerged culture was investigated by employing the Marx-Melin-Norkrans (MMN) medium. The operating conditions suitable for improving the biomass production were determined. Batch experimental tests were carried out in either shake flasks or a stirred tank reactor. The results showed that at least two factors strongly affected the fungal growth, namely the pH and the ammonia-nitrogen concentration in the medium. By controlling the acidity in the pH range 4-5 with a Na-citrate buffer solution and introducing the ammonia-nitrogen in a step-feed way (without exceeding a concentration of approximately 0.07 kg N/m3), the exponential growth phase continued for longer than that of the control culture (no stationary phase seemed to be reached after 17 days) and an approximately 2-fold increase of the biomass/substrate growth yield was obtained compared with the control culture.  相似文献   

15.
A simple visual method to estimate the linear growth rate of fungal mycelia on stacked straw is described. It has been used to evaluate the growth of the fungus Pleurotus sajor-caju on pasteurized and steam-exploded straw. The maximum linear growth rates ranged from 0.92 to 1.0 cm/d with the two treatments; the fungus seemed to be able to overcome inhibition of its growth. No growth was observed on straw treated with ammonia.  相似文献   

16.
The degradation of wheat straw, during composting, to produce the growth substrate for the edible mushroom ( Agaricus bisporus ), and subsequent colonisation by the fungal hyphae, was studied by electron microscopy which revealed an ecological succession of micro-organisms, initially dominated by a largely bacterial flora with few fungi. Later in the composting process actinomycetes were dominant. The initial rise in numbers of vegetative bacterial cells was followed by a steady decline and the appearance of spore forms. Several modes of microbial attack were observed. The most rapid degradation occurred initially on the cuticle and in the phloem and spread to a general degradation of all the plant tissue types present. Microbial attachment on the plant cell walls was non-uniform. As a result of these processes many of the plant fibres became separated but the final material still retained considerable structural integrity. Agaricus bisporus mycelium rapidly covered the surface of the straw but colonised the internal straw tissues more slowly. Surface-growing hyphal cells were encrusted with needle-like crystals presumed to be calcium oxalate.  相似文献   

17.
One of the practical problems in scaling-up the production of fungal inocula for environmental applications is how to provide essential humidity for fungal growth. Pelleted solid substrate was used as a fungal biomass carrier. It was coated with alginate or agar hydrogels that contained mycelial fragments of the white-rot fungi Trametes versicolor or Irpex lacteus. To follow fungal growth and formation of mycelial coat over pelleted substrate, the fluorescein-diacetate hydrolysing activity (FDA) assay and visual inspection were used. Both fungi were able to overgrow the pelleted substrate in 5–6 days, at a relative humidity (RH) of 86.3% or higher. The enrichment of alginate hydrogel with nutrients or coating of pelleted substrate with more hydrophilic agar hydrogel enabled I. lacteus to overgrow the pellets at a lower RH of 83.6%. Fungal inocula produced at lower RH possessed lower final moisture contents and had greater mechanical strength. Conditioning of T. versicolor mycelial fragments, by a 3-h incubation in fresh growth medium, enhanced fungal growth over the pelleted substrate. A mathematical model was used to simulate and to explain moisture distribution in a hydrogel-coated pellet and the formation of mycelial coat, for various conditions of fungal inocula production.  相似文献   

18.
玉米秸秆还田对土壤丛枝菌根真菌群落的影响   总被引:4,自引:0,他引:4  
为揭示农业管理活动对土壤丛枝菌根(AM)真菌的影响机制,基于Illumina Miseq高通量测序平台以及脂肪酸指纹图谱方法,研究了连续4年玉米秸秆还田后,AM真菌群落组成、AM真菌生物量及其与土壤环境因子间的相互关系.结果表明:所获得的2430个AM真菌OTUs从门到种依次分类,共分为1门、3纲、4目、8科、10属、143种,但不同处理间AM真菌群落丰富度(Chao1指数和ACE指数)、多样性(Shannon、Simpson多样性指数)没有显著差异.AM真菌中类球囊霉属、球囊霉属为优势属.随秸秆还田量的增加,球囊霉属丰度降低;3000、9000 kg·hm^-2秸秆还田量下,类球囊霉属、无梗囊霉属的丰度与对照(0 kg·hm^-2)间差异达极显著水平;原囊霉属、类球囊霉属、球囊霉属在3000 kg·hm^-2秸秆还田量下与对照间差异显著,非度量多维尺度(NMDS)分析表明,9000、12000 kg·hm^-2的秸秆还田量下土壤AM真菌β多样性与对照间聚集度较其他处理相差较远,秸秆还田量对AM真菌β多样性的影响显著.多元分析结果能在累积变量82.8%上揭示土壤主要理化性状与AM真菌丰富度、多样性的空间变化关系.土壤全氮、碱解氮是影响以磷脂脂肪酸表征的土壤主要微生物类群生物量以及以中性脂肪酸表征的AM真菌生物量的主要因子.持续玉米秸秆还田改变了AM真菌属水平上的分类学组成;随秸秆还田量的增加,AM真菌特有的微生物种类减少,AM真菌群落组成间的相似度下降;秸秆还田增加了土壤AM真菌生物量及其占土壤微生物总生物量的比例.  相似文献   

19.
Summary The biodegradability of straw by a mixed bacterial culture obtained from a pile of weeds was studied by microcalorimetry. All the cultures were grown at 30°C under anaerobic conditions in microcalorimetric vessels. The fermentation thermograms, obtained using well defined conditions, were very reproducible. The quantities of heat produced during straw degradation were found to be proportional to the quantity of straw introduced at the beginning of the fermentation.The recovered carbon was also found to be proportional to the initial quantity of straw. From both microcalorimetric and chemical analysis it was concluded that the limiting factor of the straw degradation was the cellulolytic activity of the mixed culture. This is supported by the fact that commercially available cellulase added to the growth medium increases the amount of straw degradation by about four times. The heat associated with fermentation of each cellulose monomer (C6H10O5) was found to be 120 kJ, a value which is close to the heat associated with hexose fermentation by pure cultures. In conclusion, we propose that microcalorimetry can be used as a powerful tool for the analysis of the biodegradability of complex heterogeneous substrate by pure or mixed cultures.  相似文献   

20.
Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号