首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finite parthenogenetic populations with high genomic mutation rates accumulate deleterious mutations if back mutations are rare. This mechanism, known as Muller's ratchet, can explain the rarity of parthenogenetic species among so called higher organisms. However, estimates of genomic mutation rates for deleterious alleles and their average effect in the diploid condition in Drosophila suggest that Muller's ratchet should eliminate parthenogenetic insect populations within several hundred generations, provided all mutations are unconditionally deleterious. This fact is inconsistent with the existence of obligatory parthenogenetic insect species. In this paper an analysis of the extent to which compensatory mutations can counter Muller's ratchet is presented. Compensatory mutations are defined as all mutations that compensate for the phenotypic effects of a deleterious mutation. In the case of quantitative traits under stabilizing selection, the rate of compensatory mutations is easily predicted. It is shown that there is a strong analogy between the Muller's ratchet model of Felsenstein (1974) and the quantitative genetic model considered here, except for the frequency of compensatory mutations. If the intensity of stabilizing selection is too small or the mutation rate too high, the optimal genotype becomes extinct and the population mean drifts from the optimum but still reaches a stationary distribution. This distance is essentially the same as predicted for sexually reproducing populations under the same circumstances. Hence, at least in the short run, compensatory mutations for quantitative characters are as effective as recombination in halting the decline of mean fitness otherwise caused by Muller's ratchet. However, it is questionable whether compensatory mutations can prevent Muller's ratchet in the long run because there might be a limit to the capacity of the genome to provide compensatory mutations without eliminating deleterious mutations at least during occasional episodes of sex.  相似文献   

2.
The Genetic Structure of Admixed Populations   总被引:26,自引:2,他引:24       下载免费PDF全文
J. C. Long 《Genetics》1991,127(2):417-428
  相似文献   

3.
Recent advances in the quantitative genetics of traits in wild animal populations have created new interest in whether natural selection, and genetic response to it, can be detected within long-term ecological studies. However, such studies have re-emphasized the fact that ecological heterogeneity can confound our ability to infer selection on genetic variation and detect a population''s response to selection by conventional quantitative genetics approaches. Here, I highlight three manifestations of this issue: counter gradient variation, environmentally induced covariance between traits and the correlated effects of a fluctuating environment. These effects are symptomatic of the oversimplifications and strong assumptions of the breeder''s equation when it is applied to natural populations. In addition, methods to assay genetic change in quantitative traits have overestimated the precision with which change can be measured. In the future, a more conservative approach to inferring quantitative genetic response to selection, or genomic approaches allowing the estimation of selection intensity and responses to selection at known quantitative trait loci, will provide a more precise view of evolution in ecological time.  相似文献   

4.
Phenotypic plasticity is an important mechanism allowing adaptation to new environments and as such it has been suggested to facilitate biological invasions. Under this assumption, invasive populations are predicted to exhibit stronger plastic responses than native populations. Drosophila suzukii is an invasive species whose males harbor a spot on the wing tip. In this study, by manipulating developmental temperature, we compare the phenotypic plasticity of wing spot size of two invasive populations with that of a native population. We then compare the results with data obtained from wild‐caught flies from different natural populations. While both wing size and spot size are plastic to temperature, no difference in plasticity was detected between native and invasive populations, rejecting the hypothesis of a role of the wing‐spot plasticity in the invasion success. In contrast, we observed a remarkable stability in the spot‐to‐wing ratio across temperatures, as well as among geographic populations. This stability suggests either that the spot relative size is under stabilizing selection, or that its variation might be constrained by a tight developmental correlation between spot size and wing size. Our data show that this correlation was lost at high temperature, leading to an increased variation in the relative spot size, particularly marked in the two invasive populations. This suggests: (a) that D. suzukii's development is impaired by hot temperatures, in agreement with the cold‐adapted status of this species; (b) that the spot size can be decoupled from wing size, rejecting the hypothesis of an absolute constraint and suggesting that the wing color pattern might be under stabilizing (sexual) selection; and (c) that such sexual selection might be relaxed in the invasive populations. Finally, a subtle but consistent directional asymmetry in spot size was detected in favor of the right side in all populations and temperatures, possibly indicative of a lateralized sexual behavior.  相似文献   

5.
We evaluate Sewall Wright's three-phase “shifting balance” theory of evolution, examining both the theoretical issues and the relevant data from nature and the laboratory. We conclude that while phases I and II of Wright's theory (the movement of populations from one “adaptive peak” to another via drift and selection) can occur under some conditions, genetic drift is often unnecessary for movement between peaks. Phase III of the shifting balance, in which adaptations spread from particular populations to the entire species, faces two major theoretical obstacles: (1) unlike adaptations favored by simple directional selection, adaptations whose fixation requires some genetic drift are often prevented from spreading by barriers to gene flow; and (2) it is difficult to assemble complex adaptations whose constituent parts arise via peak shifts in different demes. Our review of the data from nature shows that although there is some evidence for individual phases of the shifting balance process, there are few empirical observations explained better by Wright's three-phase mechanism than by simple mass selection. Similarly, artificial selection experiments fail to show that selection in subdivided populations produces greater response than does mass selection in large populations. The complexity of the shifting balance process and the difficulty of establishing that adaptive valleys have been crossed by genetic drift make it impossible to test Wright's claim that adaptations commonly originate by this process. In view of these problems, it seems unreasonable to consider the shifting balance process as an important explanation for the evolution of adaptations.  相似文献   

6.
Cope's rule, wherein a lineage increases in body size through time, was originally motivated by macroevolutionary patterns observed in the fossil record. More recently, some authors have argued that evidence exists for generally positive selection on individual body size in contemporary populations, providing a microevolutionary mechanism for Cope's rule. If larger body size confers individual fitness advantages as the selection estimates suggest, thereby explaining Cope's rule, then body size should increase over microevolutionary time scales. We test this corollary by assembling a large database of studies reporting changes in phenotypic body size through time in contemporary populations, as well as studies reporting average breeding values for body size through time. Trends in body size were quite variable with an absence of any general trend, and many populations trended toward smaller body sizes. Although selection estimates can be interpreted to support Cope's rule, our results suggest that actual rates of phenotypic change for body size cannot. We discuss potential reasons for this discrepancy and its implications for the understanding of Cope's rule.  相似文献   

7.
Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life‐history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought.  相似文献   

8.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   

9.
Lande and Arnold's (1983) technique for measuring selection on correlated quantitative traits was used to identify the targets of selection and to reveal the direction of selection on three bill dimensions, during different stages of the life cycle in a population of Darwin's finches, Geospiza conirostris, on Isla Genovesa, Galápagos. There was a tendency towards disruptive selection during dry conditions, arising from differential survival. In terms of longevity and breeding success of females, the direction of selection was to increase bill length. For males competing for territories, selection acted to increase bill depth and bill length. The effects of male-male interactions were separated from those of female choice. Male-male interactions selected for deep and long bills, whereas females chose their mates on the basis of a male's territory position and plumage coloration. The results reveal three factors constraining changes in bill dimensions: a tendency for the mean of a dimension to shift in one direction is counteracted by selection in the opposite direction on 1) another, positively correlated, bill dimension, 2) the same dimension in the other sex, and 3) the same dimension at another stage of the life cycle. If these factors are overcome by strong directional selection at one stage of the life cycle and relaxation at another, there can be an evolutionary response because the bill dimensions in this population are known to be heritable. The results complement those found in studies of G. fortis on another island and strengthen the view that these populations of Darwin's finches are frequently subjected to natural selection.  相似文献   

10.
Pest resistance to pesticides is an increasing problem because pesticides are an integral part of high-yielding production agriculture. When few products are labeled for an individual pest within a particular crop system, chemical control options are limited. Therefore, the same product(s) are used repeatedly and continual selection pressure is placed on the target pest. There are both financial and environmental costs associated with the development of resistant populations. The cost of pesticide resistance has been estimated at approximately $ 1.5 billion annually in the United States. This paper will describe protocols, currently used to monitor arthropod (specifically insects) populations for the development of resistance. The adult vial test is used to measure the toxicity to contact insecticides and a modification of this test is used for plant-systemic insecticides. In these bioassays, insects are exposed to technical grade insecticide and responses (mortality) recorded at a specific post-exposure interval. The mortality data are subjected to Log Dose probit analysis to generate estimates of a lethal concentration that provides mortality to 50% (LC50) of the target populations and a series of confidence limits (CL''s) as estimates of data variability. When these data are collected for a range of insecticide-susceptible populations, the LC50 can be used as baseline data for future monitoring purposes. After populations have been exposed to products, the results can be compared to a previously determined LC50 using the same methodology.  相似文献   

11.
Kohn MH  Wittkopp PJ 《Molecular ecology》2007,16(14):2831-2833
The distinctive black phenotype of ebony mutants has made it one of the most widely used phenotypic markers in Drosophila genetics. Without doubt, ebony showcases the fruits of the fly community's labours to annotate gene function. As of this writing, FlyBase lists 142 references, 1277 fly stocks, 15 phenotypes and 44 alleles. In addition to its namesake pigmentation phenotype, ebony mutants affect other traits, including phototaxis and courtship. With phenotypic consequences of ebony variants readily apparent in the laboratory, does natural selection also see them in the wild? In this issue of Molecular Ecology, Pool & Aquadro investigate this question and found signs of natural selection on the ebony gene that appear to have resulted from selection for darker pigmentation at higher elevations in sub‐Saharan populations of Drosophila melanogaster. Such findings from population genomic analysis of wild‐derived strains should be included in gene annotations to provide a more holistic view of a gene's function. The evolutionary annotation of ebony added by Pool & Aquadro substantiates that pigmentation can be adaptive and implicates elevation as an important selective factor. This is important progress because the selective factors seem to differ between populations and species. In addition, the study raises issues to consider when extrapolating from selection at the molecular level to selection at the phenotypic level.  相似文献   

12.
Social context refers to the composition of an individual''s social interactants, including potential mates. In spatially structured populations, social context can vary among individuals within populations, generating the opportunity for social selection to drive differences in fitness functions among individuals at a fine spatial scale. In sexually polymorphic plants, the local sex ratio varies at a fine scale and thus has the potential to generate this opportunity. We measured the spatial distribution of two wild populations of the gynodioecious plant Silene vulgaris and show that there is fine‐scale heterogeneity in the local distribution of the sexes within these populations. We demonstrate that the largest variance in sex ratio is among nearest neighbors. This variance is greatly reduced as the spatial scale of social interactions increases. These patterns suggest the sex of neighbors has the potential to generate fine‐scale differences in selection differentials among individuals. One of the most important determinants of social interactions in plants is the behavior of pollinators. These results suggest that the potential for selection arising from sex ratio will be greatest when pollen is shared among nearest neighbors. Future studies incorporating the movement of pollinators may reveal whether and how this fine‐scale variance in sex ratio affects the fitness of individuals in these populations.  相似文献   

13.
We present a quantitative genetic model for the evolution of growth trajectories that makes no assumptions about the shapes of growth trajectories that are possible. Evolution of a population's mean growth trajectory is governed by the selection gradient function and the additive genetic covariance function. The selection gradient function is determined by the impact of changes in size on the birth and death rates at different ages, and can be estimated for natural populations. The additive genetic covariance function can also be estimated empirically, as we demonstrate with four vertebrate populations. Using the genetic data from mice, a computer simulation shows that evolution of a growth trajectory can be constrained by the absence of genetic variation for certain changes in the trajectory's shape. These constraints can be visualized with an analysis of the covariance function. Results from four vertebrate populations show that while each has substantial genetic variation for some evolutionary changes in its growth trajectory, most types of changes have little or no variation available. This suggests that constraints may often play an important role in the evolution of growth.  相似文献   

14.
The findings from long-term field studies on biological effects in plant populations inhabiting radioactively contaminated territories contrast in levels and compositions of dose-forming radionuclides are presented. Plant populations developing under radioactive impact show enhanced frequencies of gene and chromosome mutations, and their reproductive potential is inferior to reference populations. Even relatively low levels of technogenic impact are able to increase genetic diversity and destroy regularities inherent for intact populations. Chronic radiation exposure from a certain level appears to be an ecological factor changing genetic structure of wild populations. Data presented indicate the presence of adaptation processes in plant populations in territories with technogenic impact. Under ecological stress, there are selection processes for resistance improvement in plant populations. But an appearance and rate of this process can essentially differ in dependence on radioecological conditions.  相似文献   

15.
Selfing species are prone to extinction, possibly because highly selfing populations can suffer from a continuous accumulation of deleterious mutations, a process analogous to Muller's ratchet in asexual populations. However, current theory provides little insight into which types of genes are most likely to accumulate deleterious alleles and what environmental circumstances may accelerate genomic degradation. Here, we investigate temporal changes in the environment that cause fluctuations in the strength of purifying selection. We simulate selfing populations with genomes containing a mixture of loci experiencing constant selection and loci experiencing selection that fluctuates in strength (but not direction). Even when both types of loci experience the same average strength of selection, loci under fluctuating selection contribute disproportionately more to deleterious mutation accumulation. Moreover, the presence of loci experiencing fluctuating selection in the genome increases the deleterious fixation rate at loci under constant selection; under most realistic scenarios, this effect of linked selection can be attributed to a reduction in Ne. Fluctuating selection is particularly injurious when selective environments are strongly autocorrelated over time and when selection is concentrated into rare bouts of strong selection. These results imply that loci under fluctuating selection are likely important drivers of extinction in selfing species.  相似文献   

16.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

17.
Previous attempts to model the joint action of selection and mutation in finite populations have treated population size as being independent of the mutation load. However, the accumulation of deleterious mutations is expected to cause a gradual reduction in population size. Consequently, in small populations random genetic drift will progressively overpower selection making it easier to fix future mutations. This synergistic interaction, which we refer to as a mutational melt-down, ultimately leads to population extinction. For many conditions, the coefficient of variation of extinction time is less than 0.1, and for species that reproduce by binary fission, the expected extinction time is quite insensitive to population carrying capacity. These results are consistent with observations that many cultures of ciliated protozoans and vertebrate fibroblasts have characteristic extinction times. The model also predicts that clonal lineages are unlikely to survive more than 104 to 105 generations, which is consistent with existing data on parthenogenetic animals. Contrary to the usual view that Muller's ratchet does more damage when selection is weak, we show that the mean extinction time declines as mutations become more deleterious. Although very small sexual populations, such as self-fertilized lines, are subject to mutational meltdowns, recombination effectively eliminates the process when the effective population size exceeds a dozen or so. The concept of the effective mutation load is developed, and several procedures for estimating it are described. It is shown that this load can be reduced substantially when mutational effects are highly variable.  相似文献   

18.
Five populations of Drosophila melanogaster have previously been shown to be replicably different in their responses to artificial selection for knockdown resistance to ethanol fumes (Cohan and Hoffmann, 1986). The present study tests whether this divergence could be attributed to the epistatic mechanism assumed by Wright's shifting-balance model of evolution, in which alleles favored in the genetic background of one population are not favored in that of another. If this were the mechanism of divergence, crosses between selected lines from different populations would be expected to yield an epistatic loss of the selected phenotype. However, all such crosses showed a good fit to an additive model with dominance. Divergence by an epistatic mechanism may also be associated with epistatic variance within populations, but no evidence for such epistasis was found. The populations therefore appear to have responded in different ways to selection not because of epistasis but because knockdown-resistance alleles that were common in some populations were absent (or at least less common) in others.  相似文献   

19.
A group-selection model is presented in which each group is initiated by a single fertilized female and persists for several generations before dispersal. Maynard Smith (1964) concluded that altruism could not plausibly evolve under these circumstances. I show that his conclusion is an artifact of a simplifying assumption that amounts to a worst-case scenario for group selection. When the standard donor-recipient equations for altruistic behavior are used in Maynard Smith's model, Mendelian populations derived from sibling groups are often more favorable for the evolution of altruism than are the sibling groups themselves. In general, long-term and large-scale aspects of population structure may at times be important in the evolution of altruistic and other group-advantageous behaviors.  相似文献   

20.
Y. X. Fu 《Genetics》1996,143(1):557-570
The purpose of this paper is to develop statistical tests of the neutral model of evolution against a class of alternative models with the common characteristic of having an excess of mutations that occurred a long time ago or a reduction of recent mutations compared to the neutral model. This class of population genetics models include models for structured populations, models with decreasing effective population size and models of selection and mutation balance. Four statistical tests were proposed in this paper for DNA samples from a population. Two of these tests, one new and another a modification of an existing test, are based on EWENS'' sampling formula, and the other two new tests make use of the frequencies of mutations of various classes. Using simulated samples and regression analyses, the critical values of these tests can be computed from regression equations. This approach for computing the critical values of a test was found to be appropriate and quite effective. We examined the powers of these four tests using simulated samples from structured populations, populations with linearly decreasing sizes and models of selection and mutation balance and found that they are more powerful than existing statistical tests of the neutral model of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号