首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions in fen meadows in Dutch stream valleys are influenced by both deep (Ca2+-rich) and shallow (Ca2+-poor) groundwater flows. The distribution patterns of phreatophytic (groundwater-influenced) plant species showed distinct relationships with the distribution of different groundwater types. Large fluctuations in the ionic composition of groundwater were observed in the upper peat layers of drained areas. Ca2+-rich groundwater was replaced by precipitation water to a considerable depth (1–1.5 m). These fluctuations in groundwater composition were less pronounced in undrained areas.It was observed that characteristic species of fen meadow communities and rare phreatophytic species were restricted to areas with high water tables, which were nourished by either Ca2+-poor or by Ca2+-rich groundwater. Few species showed a preference for drained areas, where replacement of groundwater types gave rise to the occurrence of an intermediate groundwater type, which was thought to be the result of an increased acidification of the top soil (increased influence of infiltration water).It was argued that the endangered species were best preserved in areas with an undisturbed discharge of natural groundwater flows.Abbreviations EC = Electrical conductivity  相似文献   

2.

The City of Fredericton, New Brunswick, Canada obtains its water from the Saint John River-recharged Fredericton aquifer. Water quality improves as it flows from the river into the aquifer in a process called bank filtration. Microorganisms contribute to water quality improvements during bank filtration by removing organic carbon. In the Fredericton aquifer, microbially catalyzed reductive dissolution of manganese oxide minerals negatively affects water quality. Aerobic and anaerobic microorganisms were cultured from Fredericton aquifer production well water, from associated bedrock groundwater, and from Saint John River sediment core and sediment groundwater samples. Aerobes were the largest culturable groups in all samples. The ratio of aerobes to other microbial groups, i.e., those reducing nitrate, Mn4 +, Fe3 +, or sulfate, did not vary significantly along the water flow path from the river to the aquifer. Analysis of microbial community composition along the flow path indicated an essentially identical community except in the immediate vicinity of the aquifer. This is in agreement with the absence of macroscale redox zones in the sediment below the Saint John River as determined by groundwater geochemical data. Bacteria isolated from groundwater samples, identified by 16S ribosomal RNA gene sequencing, were α -, β -, γ -, and δ -Proteobacteria, Actinobacteria, and Firmicutes. In contrast to groundwater samples, the majority of bacteria isolated from sediments were γ -Proteobacteria. Numbers of manganese-reducing bacteria, including Aeromonas spp., were small, however Mn4 + reduction ability was widespread in bacteria enriched and isolated with other electron acceptors. The diverse Fredericton aquifer microbial community likely uses manganese oxide minerals as a sink for electrons derived from organic carbon oxidation.  相似文献   

3.
地下水是干旱荒漠区潜水灌丛植物的重要水分来源,为认识地下水埋深对潜水植物功能性状的影响,利用蒸渗仪群配备的全自动补水仪设置两组地下水埋深(2和3.5 m),测定幼龄梭梭生长季同化枝水力性状、气体交换特征和根系形态参数.结果表明:与地下水埋深2 m相比,地下水埋深3.5 m处理幼龄梭梭黎明前同化枝水势、饱和膨压渗透势和根...  相似文献   

4.
In Mediterranean ecosystems vegetation overlying shallow, transient aquifers is often dominated by woody phreatophytes, trees and shrubs that have been shown to be dependent on groundwater for their water requirements. Natural and anthropogenic alterations of groundwater tables (abstraction) are of clear importance to phreatophytic vegetation as reduction of water tables may sever these plants from their natural water sources. Seasonal water sources were determined for species growing on a coastal dune system that overlies a shallow sandy aquifer in south-western Australia. The plants studied grew over groundwater that ranged in depth from 2.5 to 30 m. The naturally occurring stable isotope of hydrogen (deuterium, '2H) was used to distinguish potential water sources. Isotopic ratios from vascular water of the dominant species of the study area (Banksia ilicifolia R. Br. and Banksia attenuata R. Br. trees) were compared with those of potential sources of precipitation, soil moisture and groundwater. A relatively shallow-rooted perennial shrub, Hibbertia hypericoides Benth., was also included as an isotopic reference. The results suggest that both B. attenuata and B. ilicifolia are phreatophytic as they derived some of their water from groundwater throughout the dry-wet cycle, with the exception of B. attenuata at the site of greatest depth to groundwater (30 m) which did not use groundwater. A high proportion (>50%) of groundwater use was not maintained throughout all seasons. With the onset of the hot Mediterranean summer, progressive drying of the surface soils resulted in increased use of groundwater and deep soil moisture. During the wet winter plants used proportionately more water from the upper layers of the soil profile. The degree to which groundwater was utilised by the study species was dependent on the proximity of groundwater, availability of moisture in shallower horizons of the soil profile, root system distribution and maximum root depth.  相似文献   

5.
The macrocrustacean fauna from an alluvial aquifer in the French Pyrénées was investigated using 15 wells scattered over the floodplain. Wells were sampled at three contrasting periods for faunal, phy‐sical and chemical variables to investigate relationships between amphipod, isopod distributions and environmental factors. The assemblages, dominated by stygobite amphipod species, showed an overall persistence between the sampling dates. Groundwater quality exhibited between‐site variations related to agriculturally‐induced pollution. Low correlations existed between water quality and fauna distribution patterns. At the scale of the aquifer, groundwater contamination did not influence the macrocrustacean distribution. The spatial distribution of amphipods and isopods was clearly related to hydrogeology and hydrodynamics: strong relationships were found between the assemblages composition and the hydrological context of the stations (wells from the alluvial plain and from the alluvial terrace). With respect to spatial and temporal scales and providing adequate sampling methods, macrocrustaceans then constitute natural indicators of groundwater hydrodynamics in the Ariège aquifer.  相似文献   

6.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

7.
The aim of our study was; (i) to characterize the composition of DOM in stream water and their potential sources (groundwater, overland flow, subsurface flow and rain water) and (ii) to analyze changes in DOM concentration and composition under different hydrological conditions (baseflow and high flow) in a third-order Pampean stream (Argentina). Pampean streams are mainly fed by the shallow aquifer under baseflow conditions and they lack of riparian forest. In addition, water velocity is low due to the gentle slope of the region and nutrient levels are high, favoring the development of rich macrophyte communities. DOM optical properties in the stream and end members were determined by combining absorbance-fluorescence spectroscopy techniques. Our results indicated that DOM chemical characteristics in the stream were mainly modulated by a differential contribution of end members to stream water depending on hydrological conditions. We observed that DOM in groundwater showed a microbial origin while DOM in runoff was terrestrially-derived. DOC concentration and inputs of humic substances from the riparian zone increased with discharge at high flow conditions. Due to the strong link between DOC properties and the riparian environment, structural alterations in the stream channel and changes in riparian vegetation (forestation) may result in changes in DOM composition and dynamics.  相似文献   

8.
Knowledge of whether a peatland is fed by a surface aquifer or is providing water to the aquifer can lead to different aquifer and wetland management strategies. Few studies have been conducted to investigate aquifer-peatland connections, because flow connections are difficult to measure and can be spatially and temporally variable. The objective of this study was to combine chemical and botanical indicators of groundwater inflow to Sphagnum-dominated peatlands for a better classification of their water sources. Available knowledge of peatland geomorphic setting, water chemistry, and vegetation data for 12 aquifer-peatland systems of the Abitibi-Temiscamingue region and of the St. Lawrence Lowlands, two contrasting regions of southern Quebec (Canada), were used to derive indicators of groundwater inflow. Total dissolved solids (TDS) is identified as a comprehensive indicator of water mineralization. Threshold values of 16 mg/l (Abitibi-Temiscamingue) and 22 mg/l (St. Lawrence Lowlands) were found to indicate the presence of groundwater within the peatland. Results show that combining chemical (TDS) and botanical indicators can detect the presence of groundwater inflow into most of the studied peatlands. The indicators are more efficient on slope peatlands, where groundwater inflow is more substantial and less spatially variable, than in basin peatlands. A two-step approach is proposed: (1) identify the geomorphic setting of the peatland, and (2) estimate the chemical and botanical indicators. This approach is low-cost and easy to implement, and thus can be used on a large number of sites to assess the presence of groundwater inflow to peatlands.  相似文献   

9.
Chimner  Rodney A.  Cooper  David J. 《Plant and Soil》2004,260(1-2):225-236
Plant and Soil - An understanding of the water source used by phreatophytic desert shrubs is critical for understanding how they function and respond to man-caused groundwater drawdowns. Shrubs can...  相似文献   

10.
The influence of climatic drought and groundwater abstraction on phreatophytic vegetation dynamics was investigated in the southwest of Western Australia. Two contrasting examples of long-term phreatophytic plant community response to reduced water availability are presented. Multivariate analysis of vegetation and hydrological parameters determined depth to watertable as the dominant biophysical driver of floristic spatial and temporal patterns. Under lower rates of watertable drawdown (9 cm year?1), a progressive change in floristic composition was observed over a 33-year period. The abundance of species with a preference for wetter sites was significantly reduced, whereas that of more drought-tolerant species increased. Higher rates of drawdown (50 cm year?1) where groundwater abstraction exacerbated climatic drought resulted in a threshold response in vegetation and 33% dissimilarity to pre-abstraction floristics in 12 years. In the context of an ecohydrological state and transition conceptual model, it is suggested higher rates of groundwater drawdown result in a threshold breach and subsequent transition to an alternative ecohydrological state, whilst lower rates result in a progressive floristic transition.  相似文献   

11.
刘深思  徐贵青  米晓军  陈图强  李彦 《生态学报》2022,42(21):8881-8891
干旱区因降水稀少,地下水成为荒漠植被重要且稳定的水源。选取古尔班通古特沙漠南缘建群种植物梭梭(Haloxylon ammodendron)为研究对象,通过测量不同地下水埋深(3.45、9.08、10.47、13.27 m和15.91 m)下生长季前期和后期同化枝生理生化指标(黎明水势、正午水势、含水量、氯离子、钠离子、脯氨酸和非结构性碳水化合物)和生长与形态特征(生长速率和胡伯尔值),旨在认识荒漠植物对地下水埋深增加和季节性干旱的响应特征和调节适应机制。结果表明:(1)梭梭应对地下水埋深变化的生理调节对策,是采取先降低后升高黎明前同化枝水势、降低新枝形成期同化枝生长速率、增大胡伯尔值和积累非结构性碳水化合物的策略;(2)梭梭应对生长季大气干旱的生理调节对策,是通过降低黎明前同化枝水势、维持较高胡伯尔值、积累钠离子和消耗淀粉抵御季节性干旱;(3)在大气干旱与地下水水文干旱交互作用下,梭梭是采取降低正午同化枝水势、维持较高的同化枝含水量和积累可溶性糖的生态策略。综上所述,梭梭在响应地下水水文干旱和季节性大气干旱的生理特征间存在差异。研究结果丰富了水文和大气干旱对梭梭生理和生长影响的认知,可以为基于地下水资源管理的干旱区荒漠植被保育提供参考。  相似文献   

12.
The macroscopic algae Characeae are usually assumed to occur in waterbodies supplied by groundwater with low phosphate content, but the indicative value of the species is seldom defined in bibliography. Former braided channels of the Rhône river are supplied with groundwater originating from the main channel (seepage) or from hillslope aquifer. The aim of the present paper was to determine if it possible to use the Characeae as indicators of physicochemical characteristies of water in order to assess the origin of groundwater supplying former river channels. Four former braided channels of the Rhône River colonized by Characeae were investigated, and the physico-chemical characteristics of i) the channels, ii) the groundwater and iii) the river were measured over a period of several months. Species are arranged along a gradient of conductivity, alkalinity, ammonium and phosphate content of the water. Charophyte species can indicate the origin of groundwater, either seepage or hillslope nutrient-poor aquifer, and integrate both the average value of the chemical parameter, and their variations. C. hispida occurs in a nutrient-poor channel mainly supplied by highly calcareous groundwater coming from hillslope aquifer. Chara major has requirements close to those of C. hispida, but is more tolerant to periodic inputs of nutrients. C. vulgaris and N. syncarpa both tolerate mesotrophic waters originating from both hillslope aquifer and seepage, and C. globularis is associated to a channel mainly supplied by mesotrophic to eutrophic river seepage.  相似文献   

13.
The ecological status of streams depends on an equilibrium between hydrological processes and biological dynamics. Water discharge is the main requisite for a wealthy riparian habitat. Nevertheless, human practices severely affect water availability through stream water derivation and groundwater withdrawal. In this sense, impacts upon aquifer water storage and its effects on base flow generation have a significant effect on stream biology. Consequently, biological indicators will point out poor conditions resulting from such human impacts. In this paper, the effects of groundwater exploitation on stream discharge and surface water quality are evaluated and compared to biological indicators in a Mediterranean catchment.The stream–aquifer relationship is investigated by considering the hydrological context of each river reach, including human pressures, and the hydraulic head in the contiguous alluvial aquifer, where it exists. These data allow us to differentiate distinct types of reaches that are defined according to a “Stream–Aquifer relationship and chemical Pressure” (SAP) classification, which is used later on to standardize the different hydrochemical and biological features of the sampling points.Stream water and groundwater hydrochemistry are compared to depict the hydraulic behavior of the sampled watercourses during wet and dry periods. Specific elements are used as tracers of groundwater inputs, wastewater influence, or even stagnant conditions during the dry season. This dataset defines a framework to interpret the biological status of each reach based on the Iberian biological monitoring working party indicator (IBMWP). Affinities between hydrological and hydrochemical conditions with biological indicator values allow the causal effects of groundwater exploitation on stream ecology to be defined.The use of multivariate principal component analysis shows that the dataset variance is distributed according to the SAP classification, and that variable grouping is in agreement with the observed hydrological processes and their effects on biological indicator values.This work provides evidence of the importance of groundwater dynamics on biological indicators in a human-modified environment. When using the SAP classification, biological indicators acquire a broader meaning as they reveal the status of biological processes and the causal references. Such information is relevant for water management assessment within the context of the European Water Framework Directive, as it emphasizes the control of groundwater exploitation as a key parameter in the preservation of stream ecological status and the achievement of the objectives of the directive.  相似文献   

14.
A metagenomic analysis of two aquifer systems located under a dairy farming region was performed to examine to what extent the composition and function of microbial communities varies between confined and surface-influenced unconfined groundwater ecosystems. A fundamental shift in taxa was seen with an overrepresentation of Rhodospirillales, Rhodocyclales, Chlorobia and Circovirus in the unconfined aquifer, while Deltaproteobacteria and Clostridiales were overrepresented in the confined aquifer. A relative overrepresentation of metabolic processes including antibiotic resistance (β-lactamase genes), lactose and glucose utilization and DNA replication were observed in the unconfined aquifer, while flagella production, phosphate metabolism and starch uptake pathways were all overrepresented in the confined aquifer. These differences were likely driven by differences in the nutrient status and extent of exposure to contaminants of the two groundwater systems. However, when compared with freshwater, ocean, sediment and animal gut metagenomes, the unconfined and confined aquifers were taxonomically and metabolically more similar to each other than to any other environment. This suggests that intrinsic features of groundwater ecosystems, including low oxygen levels and a lack of sunlight, have provided specific niches for evolution to create unique microbial communities. Obtaining a broader understanding of the structure and function of microbial communities inhabiting different groundwater systems is particularly important given the increased need for managing groundwater reserves of potable water.  相似文献   

15.
After eighteen months of active remediation at a JP-4 jet-fuel spill, aresidual of unremediated hydrocarbon remained. Further site characterizationwas conducted to evaluate the contribution of natural attenuation to controlexposure to hazards associated with the residual contamination in thesubsurface. Activities included the detailed characterization ofground-water flow through the spill; the distribution of fuel contaminantsin groundwater; and the analysis of soluble electron acceptors moving intothe spill from upgradient. These activities allowed a rigorous evaluation ofthe transport of contaminants from the spill to the receptor of groundwater,the Pasquotank River. The transport of dissolved contaminants of concern,that is benzene, toluene, ethyl benzene, xylene isomers (BTEX) andmethyl-tertiary-butyl ether (MTBE), into the river from the source area wascontrolled by equilibrium dissolution from the fuel spill to the adjacentgroundwater, diffusion in groundwater from the spill to permeable layers inthe aquifer, and advective transport in the permeable layers. The estimatedyearly loading of BTEX compounds and MTBE into the receptor was trivial evenwithout considering biological degradation. The biodegradation ofhydrocarbon dissolved in groundwater through aerobic respiration,denitrification, sulfate reduction, and iron reduction was estimated fromchanges in ground-water chemistry along the flow path. The concentrations oftarget components in permanent monitoring wells continue to decline overtime. Long term monitoring will ensure that the plume is under control, andno further active remediation is required.  相似文献   

16.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

17.
The relation between environmental conditions and the species composition and individual abundance of crustaceans was investigated in a shallow alluvial aquifer, located in the Danube wetlands (Lobau, Austria). Samples, consisting of groundwater, sediment, and fauna, were taken from permanent installed wells by means of a piston pump five times in a year cycle. The results show that the spatial and temporal distribution, individual abundance, and species richness of crustacean fauna is related to hydrological conditions, oxygen concentrations, and geologic structures in the alluvial aquifer. Therefore, crustaceans, divided in stygoxene, stygophile, and stygobite species, can be used as bioindicators of these environmental conditions in an aquifer. It is suggested that beside physicochemical analyses also the crustacean fauna should be considered to characterise a groundwater ecosystem.  相似文献   

18.
全球气候变化和人类活动的加剧, 正导致古尔班通古特沙漠南缘原始盐生旱生荒漠地区的地下水位发生显著改变。大气污染导致该地区太阳辐射减少。以盐生荒漠建群种多枝柽柳(Tamarix ramosissima)为研究对象, 选择地下水位在2.9-4.5 m波动的典型原始生境, 观测了生长期内光合有效辐射和地下水位变化时的光合作用、蒸腾作用和叶水势等生理活动的季节变化, 调查了根系分布特征; 并利用涡度相关系统测定了生态系统碳水通量, 估算群落碳同化能力、蒸腾耗水量与叶面积指数的季节变化, 旨在揭示光合有效辐射和地下水位等环境因素对柽柳属(Tamarix)荒漠灌木群落光合作用的影响。研究结果表明: 降水造成的潜土层水分状况变化对多枝柽柳的碳平衡没有显著影响。深根系与气孔调节是多枝柽柳碳平衡适应荒漠环境水分状况的两个关键机制。特殊的气孔行为体现了多枝柽柳以高水分消耗为代价将其碳获取最大化的适应对策; 多枝柽柳生理与群落尺度的水分平衡和碳获取均依赖于深根系获取的稳定地下水源, 缓和的地下水位波动将不会扰动其现有的碳/水平衡, 地下水位剧烈下降将危及多枝柽柳的生存。此外, 光合有效辐射是另一个主要影响因素, 与群落碳获取呈显著正相关关系。群落碳同化能力的季节变化是光合有效辐射和地下水位共同影响下光合作用物候学特征的体现。过度开采地下水和直接破坏原生植被的行为, 将会严重地干扰多枝柽柳群落的生存, 进而破坏该区域现有的生态水文过程。  相似文献   

19.
Some observations were made on the behaviour of total coliforms, faecal coliforms, enterococci, numbers of aerobic bacteria, salmonellas and sulphur-reducing clostridia as bacterial indicators of faecal contamination of groundwater. A controlled irrigation experiment was carried out with untreated residual water in the alluvial aquifer of the Vega of Granada (Spain). The results obtained confirm the value of these parameters as useful indicators of very recent faecal contamination; and changes were detected as the level of the freatic layer increased and the chemical composition of the groundwater changed. These groups of micro-organisms persisted for about 200 h, with the exception of the aerobes which survived for much longer. Salmonellas were present at levels too low to calculate the extent of faecal contamination and sulphur-reducing clostridia were not detected. The results obtained show that irrigation with untreated wastewater offers a lower risk of microbiological contamination of groundwater compared with the direct addition of waters decanted and/or previously filtered.  相似文献   

20.
We simulate large-scale dynamics of submarine groundwater discharge (SGD) in three different coastal aquifers on the Mediterranean Sea. We subject these aquifers to a wide range of different groundwater management conditions, leading to widely different net groundwater drainage from land to sea. The resulting SGD at steady-state is quantifiable and predictable by simple linearity in the net land-determined groundwater drainage, defined as total fresh water drainage minus groundwater extraction in the coastal aquifer system. This linearity appears to be general and independent of site-specific, variable and complex details of hydrogeology, aquifer hydraulics, streamlines and salinity transition zones in different coastal systems. Also independently of site-specifics, low SGD implies high seawater content due to seawater intruding into the aquifer and mixing with fresh groundwater within a wide salinity transition zone in the aquifer. Increasing SGD implies decreasing seawater content, decreased mixing between seawater and fresh groundwater and narrowing of the salinity transition zone of brackish groundwater in the aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号