首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular and crystal structures of six fully blocked, Ac3c-rich peptides to the tetramer level were determined by X-ray diffraction. The peptides are Fmoc-(Ac3c)2-OMe·CH3OH, Ac-(Ac3c)2-OMe, t-Boc-Ac3c-l-Phe-OMe, pBrBz-(Ac3c)3-OMe·H2O, Z-Gly-Ac3c-Gly-OTmb·(CH32CO, andt-Boc-(Ac3c)4-OMe·2H2O. Type-I (I′) β-bends and distorted 310-helices were found to be typical of the tri- and tetrapeptides, respectively. In the dipeptides, too short to form β-bend conformations, other less common structural features may be observed. The average geometry of the cyclopropyl moiety of the Ac3c residue is asymmetric and the N-Cα-C′ bond angle is significantly expanded from the regular tetrahedral value. A comparison with the structural preferences of other extensively investigated Cα,α-dialkylated α-amino acids is made and the implications for the use of the Ac3c residue in conformational design are examined.  相似文献   

2.
A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic Cα,α,-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mClAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-( Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong β-turn and helix former. A comparison with the structural propensity of α-aminoisobutyric acid, the prototype of Cα,α-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n=3−8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci. 3: 367–382 No. of Figures: 10. No. of Tables: 6. No. of References: 62  相似文献   

3.
A complete series of terminally blocked, monodispersed homo-oligopeptides (to the pentamer level) from the sterically demanding, medium-ring alicyclic Cα,α-disubstituted glycine 1-aminocyclooctane-1-carb oxylic acid (Ac8c), and two Ala/Ac8c tripeptides, were synthesized by solution methods and fully characterized. The preferred conformation of all the oligopeptides was determined in deuterochloroform solution by IR absorption and 1H-NMR. The molecular structures of the amino acid derivative Z-Ac8c-OH, the dipeptide pBrBz- (Ac8c)2-OH and the tripeptide pBrBz-(Ac8c)3-OtBu were assessed in the crystal state by X-ray diffraction. Conformational energy computations were performed on the monopeptide Ac-Ac8c-NHMe. Taken together, the results obtained strongly support the view that the Ac8c residue is an effective β-turn and helix former. A comparison is also made with the conformational preferences of α-aminoisobutyric acid, the prototype of Cα, α-disubstituted glycines, and of the other members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n=3, 5–7) investigated so far. The implications for the use of the Ac8c residue in peptide conformational design are considered.  相似文献   

4.
The conformational properties of α,α-dialkylated amino acid residues possessing acyclic (diethylglycine, Deg: di-n-propylglycine, Dpg; di-n-butylglycine, Dbg) and cyclic (1-amino-cycloalkane-1-carboxylic acid, Acnc) side chains have been compared in solution. The five peptides studied by nmr and CD spectroscopy are Boc-Ala-Xxx-Ala-OMe, where Xxx = Deg(I). Dpg (II), Dbg (III), Ac6c (IV), and Ac7c (V). Delineation of solvent-shielded NH groups have been achieved by solvent and temperature dependence of NH chemical shifts in CDCl3 and (CD3)2SO and by paramagnetic radical induced line broadening in pepiide III. In the Dxg peptides the order of solvent exposure of NH groups is Ala(1) > Ala(3) > Dxg(2), whereas in the Acnc peptides the order of solvent exposure of NH groups is Ala(1) > Acnc(2) > Ala(3). The nmr results suggest that Acnc peptides adopt folded β-turn conformations with Ala(1) and Acnc(2) occupying i + 1 and i + 2 positions. In contrast, the Dxg peptides favor extended C5 conformations. The conformational differences in the two series are clearly borne out in CD studies. The solution conformations of peptides I-III are distinctly different from the β-turn structure observed in crystals. Low temperature nmr spectra recorded immediately after dissolution of crystals of peptide II provide evidence for a structural transition. Introduction of an additional hydrogen-bonding function in Boc-Ala-Dpg-Ala-NHMe (VI) results in a stabilization of a consecutive β-turn or incipient 310-helix in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic Cα,α-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L -Ala)2-OMe and Z-L -Ala-Ac4c-L -Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the τ(N–Cα–C′) bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective β-turn and helix former. A comparison with the structural propensities of α-aminoisobutyric acid, the prototype of Cα,α-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n=3, 5–8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined. © 1997 European Peptide Society and John Wiley & Sons, Ltd  相似文献   

6.
The molecular and crystal structures of one derivative and three homopeptides (from the di-to the tetrapeptide level) of the chiral, Cα, α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by x-ray diffraction. The derivative is mClAc-D -(αMe)Phe-OH, and the peptides are pBrBz-[D -(αMe)Phe]2-NHMe, pBrBz-[D -(αMe)Phe]3-OH hemihydrate, and pBrBz-[D -(αMe)Phe]4-OtBu sesquihydrate. All (αMe)Phe residues prefer ?,ψ torsion angles in the helical region of the conformational map. The dipeptide methylamide and the tripeptide carboxylic acid adopt a β-turn conformation with a 1 ← 4 C?O…?H? N intramolecular H bond. The structure of the tripeptide carboxylic acid is further stabilized by a 1 ← 4 C?O…?H? O intramolecular H bond, forming an “oxy-analogue” of a β-turn. The tetrapeptide ester is folded in a regular (incipient) 310-helix. In general, the relationship between (αMe)Phe chirality and helix screw sense is opposite to that exhibited by protein amino acids. A comparison is made with the conclusions extracted from published work on homopeptides from other Cα-methylated α-amino acids. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
An Nα-protected model pentapeptide containing two consecutive ΔPhe residues, Boc-Leu-ΔPhe-ΔPhe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. 1H-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly H-bonded β-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P212121, a = 11.503(2), b = 16.554(2), c = 22.107(3) Å, V = 4209(1) Å,3 and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKa radiation (λ = 1.5418 Å). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 310-helical conformation (〈ϕ〉 = −68.2°, 〈ψ〉 = −26.3°), which is made up of two consecutive type III β-bends and one type I β-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive ΔPhe residues is also provided. The present study confirms that the -ΔPhe-ΔPhe-sequence can be accommodated in helical structures. © 1997 John Wiley & Sons, Inc. Biopoly 42: 373–382, 1997  相似文献   

9.
The molecular structures of four protected isovaline- (Iva-) containing peptides to the pentamer level have been determined by x-ray diffraction. The peptides are t-Boc-Ala-(S)-Iva-Ala-OMe (t-Boc : tert-butyloxycarbonyl; OMe : methoxy) and its (R)-Iva diastereomer, and t-Boc-[Ala-(R)-Iva]2-Ala-OH and its (S)-Iva diastereomeric methyl ester analogue. The two tripeptides are folded in an open type II β-bend conformation. The fully developed right-handed 310-helix formed by the (R)-Iva pentapeptide, which includes an unusual intramolecular (acid) O? H ?O?C(peptide) H bond, is partially unfolded (near the C-terminus) in the (S) -Iva pentapeptide. 1H-nmr and Fourier transform ir absorption studies suggest that in CDCl3 solution (a) the two tripeptides maintain a type II β-bend conformation of comparable stability and (b) both diastereomeric pentapeptide sequences adopt a fully developed 310-helix. A comparison with the preferred conformation of other extensively investigated Cα,α-disubstituted glycines is made and the implications for the use of the Iva residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

10.
Young Kee Kang  In Kee Yoo 《Biopolymers》2014,101(11):1077-1087
Conformational preferences of 9‐ and 14‐helix foldamers have been studied for γ‐dipeptides of 2‐aminocyclohexylacetic acid (γAc6a) residues such as Ac‐(γAc6a)2‐NHMe ( 1 ), Ac‐(Cα‐Et‐γAc6a)2‐NHMe ( 2 ), Ac‐(γAc6a)2‐NHBn ( 3 ), and Ac‐(Cα‐Et‐γAc6a)2‐NHBn ( 4 ) at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31 + G(d) level of theory to explore the influence of substituents on their conformational preferences. In the gas phase, the 9‐helix foldamer H9 and 14‐helix foldamer H14‐z are found to be most preferred for dipeptides 2 and 4 , respectively, as for dipeptides 1 and 3 , which indicates no remarkable influence of the Cα‐ethyl substitution on conformational preferences. The benzyl substitution at the C‐terminal end lead H14‐z to be the most preferred conformer for dipeptides 3 and 4 , whereas it is H9 for dipeptides 1 and 2 , which can be ascribed to the favored C? H···π interactions between the cyclohexyl group of the first residue and the C‐terminal benzyl group. There are only marginal changes in backbone structures and the distances and angles of H‐bonds for all local minima by Cα‐ethyl and/or benzyl substitutions. Although vibrational frequencies and intensities of the dipeptide 4 calculated at both M06‐2X/6‐31 + G(d) and M05‐2X/6‐31 + G(d) levels of theory are consistent with observed results in the gas phase, H14‐z is predicted to be most preferred by ΔG only at the former level of theory. Hydration did not bring the significant changes in backbone structures of helix foldamers for both dipeptide 1 and 4 . It is expected that the different substitutions at the C‐terminal end lead to the different helix foldamers, which may increase the resistance of helical structures to proteolysis and provide the more surface to the helical structures suitable for molecular recognition. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1077–1087, 2014.  相似文献   

11.
High-resolution solid-state 13C-nmr spectra of two series of fully protected oligopeptides, Z-(Aib)n-OMe (n = 3?8) and Z-(Aib)n-L-Leu-(Aib)2-OMe (n = 0?5), were recorded to gain insight into main-chain length dependence for 310-helix formation. We found that all the oligopeptides examined adopt an incipient or a fully developed 310-helical structure, as judged from the characteristic splitting of the Cβ signals as well as the conformation-dependent displacements of the Cα and C?O peaks.  相似文献   

12.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Based on a CSD search, a meta‐analysis of 1179 structures of 19 natural amino acids H3NCαH(R)C′(O)O and their derivatives H3NCαH(R)C′(O)O(H/R/M), protonated, esterified, or coordinated at the carboxylic group, shows that the chirality chain with its two steps, established in the preceding paper for alanine, can be extended to natural amino acids. High diastereoselectivities are observed in the induction from the L configuration at Cα to the ?ψ and +ψ conformations, which in turn distort the planar carboxylic group CαC′(Ocis)Otrans to asymmetric flat tetrahedra, showing that the chirality chain is an integral part of natural amino acids.  相似文献   

14.
The crystal structure of cyclo (D -Val-D -Hyi-D -Val-L -Hyi-L -Val-D -Hyi-L -Val-L -Hyi-L -Val-D -Hyi-L -Val-L -Hyi)-2H2O has been solved by x-ray direct methods. The crystals (grown from a mixture of octane / CH2C12) are an orthorhombic, centrosymmetric space group Pbca, cell parameters a = 11.458(2). b = 25.613(3). c = 23.691(3) Å. Z = 4; therefore the molecule lies on a center of inversion in the cell. The atomic coordinates for the C, N, and O atoms were refined in the anisotropic thermal motion approximation (allowing for II-atom contribution to Fcal) to a standard R- factor value of 0.081. In contrast to meso-valinomycin, the analogue under study does not adopt an octahedral cage bracelet conformation. It has an unusual centrosymmetric elongated form with two type II terminal β-bends formed by N? H?C?O 4 → 1 type intramolecular H bonds. Two symmetry-related water molecules reside in the elongated molecular cavity of the centrosymmetric depsipeptide ring. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Abstract

The crystal-state preferred conformations of two tripeptides, one tetrapeptide, and one pen- tapeptide, each containing a single residue of the chiral, Cα,α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by X-ray diffraction. The tripeptides are Z-L-(αMe)Phe-(Aib)2-OH dihydrate and Z-Aib-D-(αMe)Phe-Aib-OtBu, the tetrapeptide is Z-(Aib)2-D-(αMe)Phe-Aib-OtBu, and the pentapeptide is pBrBz-(Aib)2-DL-(αMe)Phe-(Aib)2-OtBu. While the two tripeptides are folded in a β-bend conformation, two such conformations are consecutively formed by the tetrapeptide. The pentapeptide adopts a regular 310-helix promoted by three consecutive β-bends. This study confirms the strong propensity of short peptides containing Cα-methylated α-aminoacids to fold into β-bends and 310-helical structures. Since Aib is achiral, the handedness of the observed bends and helices is dictated by the presence of the (αMe)Phe residue. In general, we have found that the relationship between (αMe)Phe chirality and helix handedness is opposite to that exhibited by protein aminoacids. A comparison with the preferred conformation of other extensively investigated Cα-methylated aminoacids is made.  相似文献   

16.
The structure of the peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe has been determined in crystals obtained from a dimethylsulfoxide–isopropanol mixture. Crystal parameters are as follows: C38H69N7O10 · H2O · 2C3H7OH, space group P21, a = 10.350 (2) Å, b = 26.084 (4) Å, c = 10.395(2) Å, β = 96.87(12), Z = 2, R = 8.7% for 2686 reflections observed > 3.0 σ (F). A single 5 → 1 hydrogen bond is observed at the N-terminus, while two 4 → 1 hydrogen bonds characteristic of a 310-helix are seen in the central segment. The C-terminus residues, Ala(6) and Leu(7) are expended, while Val(5) is considerably distorted from a helical conformation. Two isopropanol molecules make hydrogen bonds to the C-terminal segment, while a water molecule interacts with the N-terminus. The structure is in contrast to that obtained for the same peptide in crystals from methanol-water [ I. L. Karle, J. L. Flippen-Anderson, K. Uma, and P. Balaram (1990) Proteins: Structure, Function and Genetics, Vol. 7, pp. 62–73] in which two independent molecules reveal an almost perfect α-helix and a helix penetrated by a water molecule. A comparison of the three structures provides a snapshot of the progressive effects of solvation leading to helix unwinding. The fragility of the heptapeptide helix in solution is demonstrated by nmr studies in CDC13 and (CD3)2SO. A helical conformation is supported in the apolar solvent CDCl3, whereas almost complete unfolding is observed in the strongly solvating medium (CD3)2SO. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
α,β-Dehydro amino acid residues are known to constrain the peptide backbone to the β-bend conformation. A pentapeptide containing only one α,β dehydrophenylalanine (ΔPhe) residue has been synthesized and crystallized, and its solid state conformation has been determined. The pentapeptide Boc-Leu-Phe-Ala-ΔPhe-Leu-OMe (C39H55N5O8, Mw = 721.9) was crystallized from aqueous methanol. Monoclinic space group was P21, a = 10.290(2)°, b = 17.149(2)°, c = 12.179(2) Å, β = 96.64(1)° with two molecules in the unit cell. The x-ray (Mo Kα, λ = 0.7107A) intensity data were collected using a CAD4 diffractometer. The crystal structure was determined by direct methods and refined using least-squares technique. R = 4.4% and Rw = 5.4% for 4403 reflections having |F0| ≥ 3σ(|F0|). All the peptide links are trans and the pentapeptide molecule assumes 310-helical conformation. The mean ?,ψ values, averaged over the first four residues, are ?64.4°, ?22.4° respectively. There are three 4 → 1 intramolecular hydrogen bonds, characteristic of 310,-helix. In the crystal, the peptide helices interact through two head-to-tail. N? H? O intermolecular hydrogen bonds. The peptide molecules related by 21, screw symmetry form a skewed assembly of helices. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The crystal and molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-L -prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212121. Cell dimensions are a = 7.705 Å, b = 11.365 Å, and c = 21.904 Å. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 → 1 intramolecular N-H—O hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type III β-turn conformation, with ?2 = ?51.0°, ψ2 = ?39.7°, ?3 = ?65.0°, ψ3 = ?25.4°. An unusual feature is the occurrence of the proline residue at position 3 of the β-turn. The observed structure supports the view that Aib residues initiate the formation of type III β-turn conformations. The pyrrolidine ring is puckered in Cγ-exo fashion.  相似文献   

20.
β-Cyclodextrin (β-CD; cyclomaltoheptaose; cyclohepta-amylose; C42H70O35) crystallises from aqueous solutions of HI and of MeOH in the form of stout prisms, which are isomorphous to each other with monoclinic space-group P21; cell constants for C42H70O35 · 2HI · 8 H2O: a = 21.25(3), b = 10.28(2), c = 15.30(2) Å, β = 113.25(9)°, and Z = 2; and for C42H70O35 · MeOH · 6.5 H2O: a = 21.03(3), b = 10.11(2), c = 15.33(2) Å, β = 111.02(9)°, and Z = 2. X-ray counter data were used to determine the structures of both crystals, which belong to the cage type, with β-CD molecules in nearly identical, “round” shapes. In the HI complex, one I- is located inside, and one outside, the β-CD cavity; in the MeOH complex, the MeOH is within the cavity. The cavity is closed at the O-2,O-3 side by adjacent β-CD molecules, and at the O-6 side by water molecules hydrogen-bonded to the guest and to surrounding β-CD molecules. Interstices between β-CD molecules are filled by water of hydration molecules in distorted co-ordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号