首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
S. Römer  K. Humbeck  H. Senger 《Planta》1990,182(2):216-222
Dark-grown cells of the pigment mutant C-6D of Scenedesmus obliquus, strain D3 (Gaffron 1939), contain only chlorophyll (Chl) a and carotenoid precursors. In these cells a functioning photosystem I (PSI) of basic structure was characterised by a high PSI activity and a low Chl/P700 ratio. The reaction-center complex of PSI (CPI) was shown to exist in the dark-grown cells. These findings demonstrate that the assembly of the core complex of PSI and its function are independent of the presence of carotenoids. Upon illumination, carotenoids, Ch1 b and additional Chl a were synthesized. Newly formed -carotene was shown by pigment analysis using high-performance liquid chromatography (HPLC) to be incorporated into CPI. Parallel to this process a shift of the long-wavelength fluorescence emission of PSI from 712–714 to 718–719 nm was observed. In the later stages of chloroplast differentiation, when xanthophylls and Chl b were synthesized, a higher-molecular-weight complex of PSI (CPIa) could be isolated. Pigment analysis demonstrated that CPIa contained xanthophylls and Chl b in addition to Chl a and -carotene. This indicates the formation of a light-harvesting antenna closely associated with PSI (LHCI). The addition of an LHCI to the reaction-center complex of PSI caused an increase in the absorption cross-section of PSI as shown by action spectroscopy and in-vivo fluorescence measurements. A model demonstrating the changes in the molecular organization of PSI during light-induced carotenoid biosynthesis in mutant C-6D of Scenedesmus obliquus is presented.Abbreviations Chl chlorophyll - CP chlorophyll-protein complex - LHC light-harvesting complex - HPLC high-performance liquid chromatography - PSI, II photosystem I, II - PAGE polyacrylamide gel electrophoresis This work was supported by the Deutsche Forschungsgemeinschaft and a scholarship of the Studienstiftung des deutschen Volkes to S. Römer. We thank Ms. K. Bölte for technical assistance and Mr. H. Becker for drafting the figures.  相似文献   

2.
The wild type (WT) of Scenedesmus obliquus and a mutant lacking chlorophyll b and the light-harvesting complexes (WT-LHC1) were synchronized by a light-dark regime. Both cultures contained the same type of carotenoids. However, concentrations and patterns of carotenoids were different during their synchronous life cycles. The concentration of total carotenoids followed more or less that of chlorophyll. The WT contained more carotenoids per cell mass, but slightly less per chlorophyll. It is discussed that part of the carotenoids of the mutant, lacking the peripheral antenna of PSII, might be located in the chlorophyll b-less apoprotein or in an enlarged core antenna of PSII. During the life cycle of Scenedesmus the carotenes are initially synthesized and most of the α-carotene is immediately oxidized to lutein which is inserted in the antennae systems of PSII and PSI. The further oxidation of lutein to loroxanthin seems to depend on both the change from dark to light, and on stages of the life cycle itself. Although the major part of β-carotene appears to be inserted in the reaction centers, a fraction of the total pool is rapidly converted to violaxanthin, following the onset of illumination. The conversion may serve to protect against photooxidation. Further conversion of violaxanthin to neoxanthin occurs to a greater extent in the mutant, WT-LHC1. The results demonstrate (1) the close connection between the carotenoid pattern and the modulation of the photosynthetic apparatus during the life cycle of Scenedesmus and (2) the flexibility of the organism in compensating for the absence of the light-harvesting complexes of photosystems II by adjusting the carotenoid distribution.  相似文献   

3.
Absorption and low temperature fluorescence emission spectra were measured on chloroplast thylakoids and on purified reaction center chlorophyll a-protein complexes of photosystem I, CP-a1. A clear association between the presence of ß-carotene and the occurrence of far red absorbing and emitting chlorophyll a components of the reaction center antennae of photosystem I was demonstrated. For this study chloroplasts and CP-a1 were obtained from normal and carotenoid deficient plant material of various sources. The experimental material included 1) lyophilized pea chloroplasts extracted with petroleum ether, 2) the carotenoid deficient mutant C-6E of Scenedesmus obliquus and 3) wheat chloroplasts derived from normal and SAN-9789 treated plants. Removal of carotenoids, most likely principally ß-carotene, caused a loss of long wavelength absorbing chlorophylls in chloroplasts and purified CP-a1, and the loss or diminution of the long wavelength peak seen in the low temperature fluorescence emission spectrum. This association between ß-carotene and special chlorophyll a forms may explain both the photoprotective and antenna functions ascribed to ß-carotene. In the absence of carotenoids in wheat and in the Scenedesmus mutant, the chlorophyll a antenna of photosystem I was extremely photosensitive. A triplet-triplet resonance energy transfer from chlorophyll a to ß-carotene and a singlet-singlet energy transfer from excited ß-carotene to chlorophyll would explain the photoprotective and antenna functions, respectively. The role of this association in determining some of the fluorescence properties of photosystem I is also discussed.  相似文献   

4.
Six chlorophyll–protein complexes are isolated from thylakoid membranes of Bryopsis corticulans by dodecyl-β-d-maltoside polyacrylamide gel electrophoresis. Unlike that of higher plants, the 77 K fluorescence emission spectrum of the CP1 band, the PSI core complexes of B. corticulans, presents two peaks, one at 675 nm and the other at 715–717 nm. The emission peak at 715–717 nm is slightly higher than that at 675 nm in the CP1 band when excited at 438 or 540 nm. However, the peak at 715 nm is obviously lower than that at 675 nm when excited at 480 nm. The excitation spectra of CP1 demonstrate that the peak at 675 nm is mainly attributed to energy from Chl b while it is the energy from Chl a that plays an important role in exciting the peak at 715–717 nm. Siphonaxanthin is found to contribute to both the 675 nm and 715–717 nm peaks. We propose from the above results that chlorophyll a and siphonaxanthin are mainly responsible for the transfer of energy to the far-red region of PSI while it is Chl b that contributes most of the transfer of energy to the red region of PSI. The analysis of chlorophyll composition and spectral characteristics of LHCP1 and LHCP3 also indicate that higher content of Chl b and siphonaxanthin, mainly presented in LHCP1, the trimeric form of LHCII, are evolved by B. corticulans to absorb an appropriate amount of light energy so as to adapt to their natural habitats.  相似文献   

5.
The isolation and characterization of six pigment-protein complexes from five diatom species (Phaeodactylum tricornutum Bohlin, Chaetoceros gracilis Schutt, Nitzschia sp. Mono Lake, Nitzschia laevis Hust. and Thalassiosira pseudonana (Hust.) Hasle and Heimdal) was accomplished by membrane dissociation with digitonin followed by gel electrophoresis. Six analogous complexes obtained from all species were correlated in spectral characteristics and relative mass with complexes from higher plants obtained by the same procedure. The largest of these complexes, comprising about 15% of the total Chl a, contained reaction centers of Photosystem I (PSI) and antenna pigments (LHC1).Some PSI complexes also separated from LHC1 in the gel. For the first time in diatoms, a Photosystem II complex was isolated and identified from its position in the gels, absorption and fluorescence spectra, lack of P700, and enrichment carotene. Three antenna pigment-protein complexes in addition to LHC1 occurred in varying proportion under different experimental conditions but in sum, they accounted for 70% of the total Chl a. All three bands were highly enriched in Chl c and fucoxanthin, although the ratio of Chl c/ xanthophyll decreased between the slowest migrating LHC2 and fastest moving LHC4 LHC3 contained the highest proportio of pigment-protein and was composed primarily of polypeptides of about 18,000 D. Essentially all α- and β-carotene was bound to the reaction center complexes. The Nitzschia from Mono Lake differed from the other species in that PSI complexes could not be readily dissociated from its membrane by digitonin treatment, a characteristic which may reflect a different chloroplast membrane structure in this alga.  相似文献   

6.
G. Laskay  E. Lehoczki  A. L. Dobi  L. Szalay 《Planta》1986,169(1):123-129
The effects of the pyridazinone compound SAN 9785 on the photosynthetic competence of leaves, on the photochemical activity of isolated thylakoids and on the formation and spectral properties of chlorophyll-protein complexes were studied during a 72-h greening period of detached etiolated leaves of barley (Hordeum vulgare L. cv. Horpácsi kétsoros). It was established that i) the photosynthetic capacity of the leaves decreased considerably (by 80 and 90%, as determined by14CO2 fixation and fast fluorescence induction measurements, respectively); ii) the photochemical activity of isolated thylakoids from water to potassium ferricyanide and from dichlorophenol indophenol/ascorbate to methylviologen exhibited only slight reductions when expressed on a chlorophyll basis compared with the control; iii) the slow fluorescence induction curves of the treated leaves demonstrated the presence of a peculiar fluorescence component interrupting the quenching of fluorescence at around 1 min illumination; iv) a shortage of the chlorophyll-protein complex of photosystem I (CPI) occurred with a higher content of the monomer of the light harvesting complex in the thylakoids of treated leaves; and v) the fluorescence spectrum of the CPI band present in treated leaves indicates the destruction of the structural integrity of this complex during isolation from the membrane.Abbreviations Chl chlorophyll - CPI, CPII chlorophyll-protein complexes of the reaction centres of PSI and PSII - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPIP 2,6-dichlorophenol indophenol - DPIPH2 chemically reduced form of DPIP - F o fluorescence of constant yield - F v fluorescence of variable yield - F i ,F m mitial and maximum yield of fluorescence - LHCP3 monomer of the light-harvesting complex - LHCP2 and LHCP1 oligomers of the light-harvesting complex LHCP3 - PSI, PSII photosystems I, II - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone, also known as BASF 13-338 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

7.
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (?F6) isolated from iron-deficient culture contained Chl d-bound PSI–IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).  相似文献   

8.
P700 enriched fractions were isolated from two brown algae and one diatom using sucrose density centrifugation after digitinin solubilization. They had a Chl a/P700 ratio of about 250 to 375 according to the species, they were enriched in long-wavelength absorbing Chl a and exhibited a fluorescence emission maximum at 77 K near 720 nm. They all presented a major polypeptide component at 66±2 kDa, but their polypeptide composition was rather complex and somewhat different from one species to another. Further solubilization with dodecylmaltoside of those native PSI particles allowed the separation of two or three fractions. The lightest, xanthophyll-rich, fraction was identified to be a light-harvesting complex. It contained no P700 and had a major polypeptide of molecular weight near 20 kDa (at the same molecular weight than the respective LH native fraction of each species) and exhibited a 77 K peak fluorescence emission at 685 nm. The other fractions were enriched in P700 and almost entirely depleted in xanthophylls. When two of them are present, they both exhibited a major polypeptide at 66±2 kDa and were totally devoid of the LH polypeptide, but the two fractions widely differed one from another in the abundance and molecular weight of the other polypeptide components. The most purified of these two fractions presented a composition similar to PSI core complex from green plants.Abbreviations LH light-harvesting - LHCII light-harvesting complex II of green plants - P700 reaction center chlorophyll of PSI  相似文献   

9.
Chlamydomonas reinhardtii double mutant npq2 lor1 lacks the beta, epsilon-carotenoids lutein and loroxanthin as well as all beta,beta-epoxycarotenoids derived from zeaxanthin (e.g. violaxanthin and neoxanthin). Thus, the only carotenoids present in the thylakoid membranes of the npq2 lor1 cells are beta-carotene and zeaxanthin. The effect of these mutations on the photochemical apparatus assembly and function was investigated. In cells of the mutant strain, the content of photosystem-II (PSII) and photosystem-I (PSI) was similar to that of the wild type, but npq2 lor1 had a significantly smaller PSII light-harvesting Chl antenna size. In contrast, the Chl antenna size of PSI was not truncated in the mutant. SDS-PAGE and Western blot analysis qualitatively revealed the presence of all LHCII and LHCI apoproteins in the thylakoid membrane of the mutant. The results showed that some of the LHCII and most of the LHCI were assembled and functionally connected with PSII and PSI, respectively. Photon conversion efficiency measurements, based on the initial slope of the light-saturation curve of photosynthesis and on the yield of Chl a fluorescence in vivo, showed similar efficiencies. However, a significantly greater light intensity was required for the saturation of photosynthesis in the mutant than in the wild type. It is concluded that zeaxanthin can successfully replace lutein and violaxanthin in most of the functional light-harvesting antenna of the npq2 lor1 mutant.  相似文献   

10.
The pyridazinone-type herbicide norflurazon SAN 9789 inhibiting the biosynthesis of long-chain carotenoids results in significant decrease in PS II core complexes and content of light-harvesting complex (LHC) polypeptides in the 29.5–21 kDa region. The Chl a forms at 668, 676, and 690 nm that belong to LHC and antenna part of PS I disappear completely after treatment. The intensity of the Chl b form at 648 nm is sharply decreased in treated seedlings grown under 30 or 100 lx light intensity. The bands of carotenoid absorption at 421, 448 (Chl a), 452, 480, 492, 496 (β-carotene), and 508 nm also disappear. The band shift from 740 to 720 nm and decrease in its intensity relative to the 687 nm emission peak in the low-temperature fluorescence spectrum (77 K) suggests a disturbance of energy transfer from LHC to the Chla form at 710–712 nm.  相似文献   

11.
Yang Z  Su X  Wu F  Gong Y  Kuang T 《Biophysical chemistry》2005,115(1):19-27
Phosphatidylglycerol (PG) is the only anionic phospholipid in photosynthetic membrane. In this study, photosystem I (PSI) particles obtained from plant spinach were reconstituted into PG liposomes at a relatively high concentration. The results from visible absorption, fluorescence emission, and circular dichroism (CD) spectra reveal an existence of the interactions of PSI with PG. PG effect causes blue-shift and intensity decrease of Chl a peak bands in the absorption and 77 K fluorescence emission. The visible CD spectra indicate that the excitonic interactions for Chl a and Chl b molecules were enhanced upon reconstitution. Furthermore, more or less blue- or red-shift of the peaks characterized by Chl a, Chl b, and carotenoid molecules are also occurred. Simultaneously, an increase in alpha-helix and a decrease particularly in the disordered conformations of protein secondary structures are observed. In addition, the same effect also leads to somewhat more tryptophan (Trp) residues exposed to the polar environment. These results demonstrate that some alteration of molecular organization occurs within both the external antenna LHCI and PSI core complex after PSI reconstitution.  相似文献   

12.
Joly D  Carpentier R 《Biochemistry》2007,46(18):5534-5541
The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.  相似文献   

13.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

14.
When grown heterotrophically in the dark on enriched culture medium, the pigment-deficient strain of Scenedesmus obliquus, mutant C-6E, is uniquely characterized by a complete deficiency in carotenoids and chlorophyll b while retaining a low level of chlorophyll a which is exclusively utilized in photosystem I-type reactions. The strain lacks photosystem II activity but exhibits all PS-I reactions tested, including P700 redox reactions, photoreduction of CO2 with hydrogen as electron donor, and O2 uptake following methyl viologen reduction. The mutant contains 10 times more P700 per chlorophyll than the wild type and develops the pigment-protein complex of PS-I, CP-I. The action spectrum for methyl viologen reduction compares favorable to the low temperature absorption spectrum of whole cells. Both the chlorophyll fluorescence excitation and emission spectra of pigment-protein complexes derived from cells of C-6E show patterns typical of PS-I. The strain lacks the LHCs and CP-II as well as their respective apoproteins. The absence of carotenoids appears to prevent the development of the normal variety of pigment-protein complexes and the accumulation of Chl b. This inability is also expressed by the presence of only single stranded thylakoid membranes in the chloroplast of C-6E. When heterotrophically grown cells of this mutant are exposed to white light of 8 or 22 W m?2, 50% of its chlorophyll is lost by photooxidation within 4 or 1.5 hours, respectively.  相似文献   

15.
Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid?nitrogen temperatures. Fluorescence emission at around 720?nm from the red Chls in single PSI trimers was monitored at 80–100?K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.  相似文献   

16.
By the ether treatment of lyophilized PSI pigment-protein complexes, all the carotenoids and the secondary acceptor phylloquinone (A1), and more than 90% of the Chl were removed to yield the PSI complex with 9-11 molecules of Chl per reaction-center unit. The complexes retained the primary electron donor and acceptor (P700 and A0), in addition to three FeS clusters (F(X), F(A) and F(B)), and showed an activity of highly efficient electron transfer when phylloquinone was reconstituted. The methods for the preparation and the characterization of the ether-extracted PSI complexes are reviewed in this article. We also review the studies done with this PSI preparation on (1) the identification of the absorption and fluorescence spectra of P700, (2) the nano- and picosecond reaction of A0 and A1, (3) the energy-gap dependency of the reaction rate between A0 and the artificial quinones reconstituted at the A1 site, (4) the direct excitation of P700 followed by the ultra-fast electron transfer from P700 to A0, and (5) the de- and re-stabilization of the PSI structure by the removal and reconstitution, respectively, of antenna Chl in the presence of certain lipids.  相似文献   

17.
Spectrophotometric and kinetic measurements were applied to yield photosystem (PS) stoichiometries and the functional antenna size of PSI, PSIIα, and PSIIβ in Zea mays chloroplasts in situ. Concentrations of PSII and PSI reaction centers were determined from the amplitude of the light-induced absorbance change at 320 and 700 nm, which reflect the photoreduction of the primary electron acceptor Q of PSII and the photooxidation of the reaction center P700 of PSI, respectively. Determination of the functional chlorophyll antenna size (N) for each photosystem was obtained from the measurement of the rate of light absorption by the respective reaction center. Under the experimental conditions employed, the rate of light absorption by each reaction center was directly proportional to the number of light-harvesting chlorophyll molecules associated with the respective photosystem. We determined NP700 = 195, Nα = 230, Nβ = 50 for the number of chlorophyll molecules in the light-harvesting antenna of PSI, PSIIα, and PSIIβ, respectively. The above values were used to estimate the PSII/PSI electron-transport capacity ratio (C) in maize chloroplasts. In mesophyll chloroplasts C > 1.4, indicating that, under green actinic excitation when Chl a and Chl b molecules absorb nearly equal amounts of excitation, PSII has a capacity to turn over electrons faster than PSI. In bundle sheath chloroplasts C < 1, suggesting that such chloroplasts are not optimally poised for linear electron transport and reductant generation.  相似文献   

18.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

19.
H.Y. Nakatani  B. Ke  E. Dolan  C.J. Arntzen 《BBA》1984,765(3):347-352
A Photosystem-II (PS-II)-enriched chloroplast submembrane fraction has been subjected to non-denaturing gel-electrophoresis. Two chlorophyll a (Chl a)-binding proteins associated with the core complex were isolated and spectrally characterized. The Chl protein with apparent apoprotein mass of 47 kDa (CP47) displayed a 695 nm fluorescence emission maximum (77 K) and light-induced absorption characteristics indicating the presence of the reaction center Chl, P-680, and its primary electron acceptor, pheophytin. A Chl protein of apparent apoprotein mass of 43 kDa (CP43) displayed a fluorescence emission maximum at 685 nm. We conclude that CP43 serves as an antenna Chl protein and the PS II reaction center is located in CP47.  相似文献   

20.
In order to understand the organization of the PSI core antenna and to interpret results obtained from studies of the temperature and wavelength dependence of energy transfer and trapping in the PSI particles, we have constructed a model for PSI in which spectral heterogeneity is considered via a self-consistent approach based on Forster transport. The temperature dependence of the absorption and emission spectra of the individual Chl molecules in the protein matrix is calculated based on a model Hamiltonian which includes a phonon contribution. Time and wavelength resolved kinetics of PSI at different temperatures are investigated by means of two-dimensional lattice models. We conclude that wavelength-dependent fluorescence decay kinetics result only when two or more bottlenecks exist in the energy transfer and trapping process. A single trap or several pseudo-traps with spectrally identical environments do not lead to wavelength dependent decays. Simple funnel arrangements of the spectral types can be ruled out. At least one pigment with energy lower than the photochemical trap located close to the reaction center is required to produce the trends of the fluorescence lifetimes observed experimentally. The remainder of the core antenna is consistent with a random arrangement of spectral types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号