首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While base-specific support is commonly used for single-column oligodeoxynucleotide synthesis, the universal linker is critical for high-throughput synthesis of potentially thousands of samples in a single run. Here, we report conditions for cleavage and complete dephosphorylation of two commercial universal linkers, UnySupport and UnyLinker, processed in the gas phase (NH3) using our custom device. First, we compared the average yield of T10mers over time (15, 30, 60, 120, and 240 minutes, 40 psi, 80°C and 90°C). For samples processed with water added prior to incubation, we discovered a substantial increase in yield compared to those left dry (up to 55%). This was also the case for samples subjected to increases in chamber pressure (10, 20, 30 and 40 psi, 120 minutes, 80°C and 90°C). Next, we compared the effects of increased temperature, pressure and incubation times on the rates of dephosphorylation. We found the optimum conditions to be either 10 psi, 120 minutes at 80°C or 60 minutes at 90°C; in both cases, water added to columns prior to incubation had a substantial effect on rate of reaction as well as overall yield compared with those left dry. Finally, performance between the two linkers was similar enough to conclude each fulfills the desired requirements for mainstream, high-throughput oligodeoxynucleotide cleavage/deprotection and dephosphorylation in the gas phase.  相似文献   

2.
BackgroundThere is scarcity of breast cancer tissues derived from women of African origin available for patient - derived xenograft and organoid models.ObjectiveWe aim to create a versatile protocol for processing mastectomy and cryopreservation of breast cancer tissue.MethodologyAn immediate collection of breast cancer tissue from mastectomy was bathed in 4 °C HBSS and immediately transferred to 4 °C RPMI1640 containing HEPES, 10% FBS, Streptomycin and Penicillin. Tissues were processed over ice yielding nine samples of cold ischemic time (20–45 min) stored at 3 min interval. Cut samples were transferred into cryovials containing 4 °C cryoprotectant agent (90% FBS +10% Me2SO) before snap -freezing in liquid Nitrogen vapour and final short-term storage in −80 °C Freezer. The histomorphology, tissue and molecular viability were assessed.ResultsThe cold ischemic times had no detrimental effect to the nine samples despite being processed in a resource poor setting, hence providing a reproducible and reliable protocol.  相似文献   

3.
Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.  相似文献   

4.
Properties and substrate specificities of four esterases (Esterase-I, -II, -III, -IV) from Aspergillus niger were studied. Esterase-I and Esterase-II were found to be markedly stable to heat. When Esterase-I was assayed at 35°C using methylacetylsalicylate as a substrate, even after heating at 100°C for 15 min 60% of its activity remained. However, Esterase-I scarcely hydrolyzed the substrate at 70°C or over, because of a reversible change in conformation by heating as found by CD measurement. The maximum activity of Esterase-I was found at 55°C at 20 min of reaction time. Esterase-II was stable up to 80°C and had an optimum temperature for reaction at 80°C, but was irreversively inactivated by heating for 15 min at 90°C.

The four esterases hydrolyzed aliphatic esters of short chain fatty acids and acetyl esters of phenols, but neither methyl esters of aromatic carboxylic acids nor acetyl esters of aromatic alcohols.  相似文献   

5.
The objective of this study was to evaluate the addition of IGF-I to pig insemination doses stored at 15°C, in conjunction with the addition of different amounts of vitamin E (α-tocopherol). Semen samples (n = 12) from four boars were treated by the addition of different concentrations of vitamin E, ranging up to 400 μg/ml. Immediately after processing and after the doses had been stored at 15°C for 24 or 72 h, samples were warmed at 37°C and 30 ng/ml of IGF-I was added. The assessments were made after 10 and 120 min of IGF-I addition. There was a minor effect of the vitamin E added before cooling and IGF-I added after storage on sperm quality. The addition of 400 μg/ml of vitamin E to diluted semen reduced (P < 0.01) the malondialdehyde (MDA) production in boar semen stored at 15°C for 72 h, regardless of the addition of IGF-I as additive during a 120 min incubation period at 37°C. In these conditions, IGF-I also reduced (P < 0.05) the MDA production in semen samples without addition of vitamin E. IGF-I in the presence of vitamin E reduced (P = 0.03) the glucose intake in freshly diluted boar semen samples before cooling. It was concluded that the addition of 400 μg/ml of vitamin E reduces the MDA production in boar semen stored at 15°C for 72 h, regardless of the presence of IGF-I additive. The addition of IGF-I in doses stored for 72 h with vitamin E ensures higher sperm motility after 120 min of incubation at 37°C.  相似文献   

6.
The effectiveness of sulfuric acid (H(2)SO(4)), sodium hydroxide (NaOH), hydrogen peroxide (H(2)O(2)), and ozone pretreatments for conversion of cotton stalks to ethanol was investigated. Ground cotton stalks at a solid loading of 10% (w/v) were pretreated with H(2)SO(4), NaOH, and H(2)O(2) at concentrations of 0.5%, 1%, and 2% (w/v). Treatment temperatures of 90 degrees C and 121 degrees C at 15 psi were investigated for residence times of 30, 60, and 90 min. Ozone pretreatment was performed at 4 degrees C with constant sparging of stalks in water. Solids from H(2)SO(4), NaOH, and H(2)O(2) pretreatments (at 2%, 60 min, 121 degrees C/15 psi) showed significant lignin degradation and/or high sugar availability and hence were hydrolyzed by Celluclast 1.5L and Novozym 188 at 50 degrees C. Sulfuric acid pretreatment resulted in the highest xylan reduction (95.23% for 2% acid, 90 min, 121 degrees C/15 psi) but the lowest cellulose to glucose conversion during hydrolysis (23.85%). Sodium hydroxide pretreatment resulted in the highest level of delignification (65.63% for 2% NaOH, 90 min, 121 degrees C/15 psi) and cellulose conversion (60.8%). Hydrogen peroxide pretreatment resulted in significantly lower (p相似文献   

7.
Chitosan samples manufactured under different conditions were compared for effectiveness of coagulating an activated sludge suspension grown on vegetable canning wastes. Computer analysis of data from Buchner funnel filterability tests resulted in quadratic polynomial equations describing the response curves for volume of filtrate versus dosage, expressed as g/liter chitosan/100 g sludge suspended solids (SSS). The quotient of the filtrate volume and dosage at the inflection points of the equations obtained for 10 test samples and 1 commercial chitosan sample were compared to evaluate the response (effectiveness) per unit amount for each chitosan product. The product made by a standard procedure (deproteinated with 3% NaOH at 100°C for 1 hr, demineralized with 1N HCL at ambient temperature for 30 min, and deacetylated with 50% NaOH at 145–150°C under N2 for 5 or 15 min) gave the best performance as a coagulating agent for this activated sludge system. Other products, including the commercial preparation, required higher dosages to achieve the same effectiveness. Products deacetylated in the presence of sir rather than nitrogen decreased waste treatment effectiveness, which approximated the trends of reduced viscosity and molecular-weight distribution. The products containing minerals were less effective than products from which minerals had been removed prior to deacetylation, but they were more effective than the enzyme treated sample and the commercial product. In general, although chitosan products obtained after 15 min deacetylation were more effective than those receiving 5 min deacetylation, effectiveness did not correlate linearly with viscosity and molecular-weight distribution trends. However, chitosan products deacetylated for 15 min did show that the higher-molecular-weight products (0.65–1.1 × 106) were more effective coagulating agents for activated sludge than the manufactured product having the lowest molecular weight (0.47 × 106) and the commercial reference sample (0.56 × 106). Thus, higher values for molecular weight were predictive of greater effectiveness for coagulation of activated sludge suspensions.  相似文献   

8.
Ribonuclease (RNase), which often represents molecular biological contamination, is a thermostable enzyme. When RNase is heated at 121°C by autoclave sterilization for 20 min, it does not lose its activity. However, the nature of the molecular events by which the irreversible denaturation occurs remains unknown. The purpose of this study was to elucidate the molecular mechanisms of irreversible thermal denaturation of RNase A and to develop an advanced sterilization method using soft‐hydrothermal processing, which has the advantages of improved safety and cost‐efficiency. The enzymatic activity of RNase was measured using polyacrylamide gel electrophoresis with torula yeast RNA. We evaluated the temperature and time course of irreversible thermoinactivation of RNase by normal autoclaving, hot‐air sterilization, and soft‐hydrothermal processing that had been controlled to the desired steam saturation ratio. The results indicated that RNase A was deactivated by autoclave sterilization (121°C, 20 min) immediately after treatment, but was reactivated over time. Hot‐air sterilization (180°C, atmospheric pressure, 60 min) produced results similar to that of autoclave sterilization. In contrast, RNase A was irreversibly thermoinactivated by soft‐hydrothermal processing (110°C, 20 min) at 100% steam saturation ratio. We also determined that the mechanism of irreversible thermoinactivation of RNase A involved hydrolysis and deamidation under this condition at a steam saturation ratio of more than 100%. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
The effect of salinity and temperature on Olisthodiscus luteus Carter has been examined to across the relative importance of these factory on dynamics of natural population. A salinity range 2–50% was observed with increased tolerance to low salinity (<5%.) at higher temperature (20–30°C). Slinities at 4–5%. Had densities of 103 cells/ml?1, and growth >0.5 division day?1 at temperature of 15–30°C higher salinities (5–50%.) variable but distinct optima for density, growth and motility were observed 5, 10 and 30°C. Density and motility showed no clear optima from 10–10%.15–25°C where maximum growth rates >1.0 division/day?1 were common. Temperature increased from (0.5–1.9 division. Day?1) and increases of three orders of magnitude (102?103) for maximum densities. Temperature optima 20°C for growth 5–35%. And 25°C for >40%. were observed. The implications of these findings to natural populations of O. luleus are discussed.  相似文献   

10.
Water-soluble chitosan was processed using ultrasonication, microfluidisation and homogenisation to modify its physicochemical properties. The effect of using sonicated chitosan on formation of chitosan-glucose conjugates was investigated. Untreated and sonicated chitosan conjugates were prepared under varying reaction conditions (such as ratios of reactants, pH and temperature). The conjugates formed were evaluated for colour development and antioxidant activity. For both untreated and sonicated chitosans, the reactivity was found to be higher at pH 6.0/121 °C than at pH 4.9/121 °C. The reactivity was found to be lower at 105 °C at both pH conditions than at 121 °C. This clearly demonstrated the greater reactivity at higher temperature irrespective of the reaction pH. Antioxidant activity studies indicated that the conjugates formed at 121 °C had higher activity. Although sonication of water-soluble chitosan led to slightly enhanced viscosity indicating higher reactivity, it did not improve the antioxidant activity.  相似文献   

11.
[目的]更好地发掘内生菌资源,建立有效的植物内生放线菌分离方法.[方法]比较不同消毒剂和消毒程序、样品预处理、选择性分离培养基等分离内生放线菌的效果,通过形态及16S rRNA基因序列分析进行菌种鉴定.[结果]用5%的次氯酸钠处理样品4-7 min消毒效果最好;100℃处理样品15 min能较好地减少真菌和细菌的干扰.丙酸钠、琥珀酸钠等培养基分离放线菌出菌率较高且类群多样性丰富.[结论]植物样品表面消毒干燥后,100℃处理15 min,用无菌搅拌杯打碎,直接撒植物于分离培养基中的分离方法效果较好.  相似文献   

12.
Despite widespread clinical use of cryoablation, there remain questions regarding dosing and treatment times which may affect efficacy and collateral injury. Dosing and treatment times are directly related to the degree of cooling necessary for effective lesion formation. Human and swine atrial, ventricular, and lung tissues were ablated using two cryoablation systems with concurrent infrared thermography. Post freeze-thaw samples were cultured and stained to differentiate viable and non-viable tissue. Matlab code correlated viability staining to applied freeze-thaw thermal cycles, to determine injury thresholds. Tissue regions were classified as live, injured, or dead based upon staining intensity at the lesion margin. Injury begins at rates of ∼10 °C/min to 0 °C, with non-viable tissue requiring cooling rates close to 100 °C/min to ∼ −22 °C for swine and significantly greater cooling to −26 °C for human tissue (p = 0.041). At similar rates, lung tissue injury began at 0 °C, with human tissue requiring significantly less cooling, to ∼ −15 °C for complete necrosis and −26 °C for swine (p = 0.024). Data suggest that there are no significant differences between swine and human myocardial response, but there may be differences between swine and human lung cryothermal tolerance.  相似文献   

13.
Temperature requirements for growth, reproduction and formation of macrothalli of a day-neutral strain ofScytosiphon lomentaria from the Gulf of Thessaloniki were experimentally determined and correlated with the geographic distribution in the North Atlantic Ocean. The microthallus grew in a wider temperature interval and better at higher temperatures than did the macrothallus. Germlings acclimated to 5 or 15°C grew sufficiently (>20% of maximum rate) and developed into macrothalli at 5–25°C and 5–27°C. Macrothalli acclimated to 10 or 15°C grew sufficiently at 5–20°C. Macrothalli acclimated to 15°C survived at −1°C and reproduced at 5 to 23°C. Regardless of the acclimation temperature, germlings and macrothalli grew optimally (>80% of maximum rate) at 15–25°C and at 10–15°C. The experimental data explain only the southern distribution boundary ofScytosiphon in the North Atlantic. This boundary is composite in nature: on the European coasts it is a growth boundary, whereas on the American coasts it is a lethal one.  相似文献   

14.
The ability of Rhizoctonia solani AG‐1 IA, the causal agent of rice sheath blight, to survive in diseased rice straw and as sclerotia and mycelia was investigated. After storage for 10 months at 4°C, 25°C and non‐air‐conditioned natural room temperature (NRT, temperature range from 6°C to 35°C), sclerotia placed inside a desiccator, soaked in sterile water or immersed in wet paddy soil were viable. In contrast, only 15% of sclerotia in dry paddy soil survived. Survival of mycelia was severely affected by temperature and humidity. After 10 months in a desiccator at 4°C, 55% of mycelia samples could survive, whereas at 25°C and NRT, mycelial samples survived for only 7 and 5 months, respectively. However, mycelia stored in sterile water at constant temperatures (4°C or 25°C) survived for 10 months. A certain amount of UV radiation had no obvious effect on the survival of sclerotia or mycelia. The survival rate of the fungus in diseased rice straw stored for 16 months could reach 100% at 4°C, 50% at 25°C and 35% at NRT. The survival rates of the pathogen in diseased rice straw buried in dry, wet and flooded paddy soils after 10‐month storage at NRT were 75, 100 and 100%, respectively, indicating that soil humidity is a crucial factor for the survival of this fungus.  相似文献   

15.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

16.
John T. Morse 《Biofouling》2013,29(7):605-610
Dreissenid mussel (Dreissena polymorpha, Dreissena rostriformis bugensis) expansion into the Western US has renewed interest in hot-water spray mitigation of mussel fouling on boat hulls, trailers, and other equipment. However, the efficacy of hot-water sprays to mitigate dreissenid fouling has not been experimentally assessed. Emersed, adult D. polymorpha were exposed to low-pressure, hot-water sprays at 40, 50, 60, 70, and 80°C for 1, 5, or 10 s. Sprays at ≥60°C for 10 s or 80°C at ≥5 s were 100% lethal. In contrast, 1–10 s exposures did not induce 100% mortality at ≤50°C. The results indicate that mitigation of D. polymorpha fouling, especially in areas protected from the hydraulic impacts of high-pressure sprays requires spray temperatures of > 80°C applied for >5 s or no less than 60°C applied for >10 s. Thus, presently recommended spray temperatures of ≥60°C may not be 100% effective unless applied for >10 s.  相似文献   

17.
A bacterial strain Bacillus licheniformis MKU3, isolated from slaughterhouse sediments showed a strong antimicrobial activity. The antimicrobial substance produced by this strain was found to be a protein that inhibited a broad range of bacterial strains, such as Bacillus sp., Staphylococcus sp., Streptococcus sp., and Listeria monocytogenes. The antimicrobial peptide was purified to homogeneity by cut off membrane filtration followed by gel filtration chromatography. The purified protein with low molecular mass (< 8 kDa) was resolved as single band on Tricine SDS-PAGE. This protein was stable at 100°C for 10 min, but lost its activity at 121°C in 15 min. It was resistant to the proteolytic action of trypsin, proteinase K, and pronase E and stable within a wide range of pH (3.0∼11.0). This protein exhibited lytic activity on selected indicator strain Kurthia gibsonii GCS6.  相似文献   

18.
While various fixation techniques for observing ice within tissues stored at high sub-zero temperatures currently exist, these techniques require either different fixative solution compositions when assessing different storage temperatures or alteration of the sample temperature to enable alcohol-water substitution. Therefore, high-subzero cryofixation (HSC), was developed to facilitate fixation at any temperature above −80 °C without sample temperature alteration. Rat liver sections (1 cm2) were frozen at a rate of −1 °C/min to −20 °C, stored for 1 h at −20 °C, and processed using classical freeze-substitution (FS) or HSC. FS samples were plunged in liquid nitrogen and held for 1 h before transfer to −80 °C methanol. After 1, 3, or 5 days of −80 °C storage, samples were placed in 3% glutaraldehyde on dry ice and allowed to sublimate. HSC samples were stored in HSC fixative at −20 °C for 1, 3, or 5 days prior to transfer to 4 °C. Tissue sections were paraffin embedded, sliced, and stained prior to quantification of ice size. HSC fixative permeation was linear with time and could be mathematically modelled to determine duration of fixation required for a given tissue depth. Ice grain size within the inner regions of 5 d samples was consistent between HSC and FS processing (p = 0.76); however, FS processing resulted in greater ice grains in the outer region of tissue. This differed significantly from HSC outer regions (p = 0.016) and FS inner regions (p = 0.038). No difference in ice size was observed between HSC inner and outer regions (p = 0.42). This work demonstrates that HSC can be utilized to observe ice formed within liver tissue stored at −20 °C. Unlike isothermal freeze fixation and freeze substitution alternatives, the low melting point of the HSC fixative enables its use at a variety of temperatures without alteration of sample temperature or fixative composition.  相似文献   

19.
Suspensions of Legionnaires' disease bacterium stored in sterilized tap water 279–287 days produced gelation ofLimulus amebocyte lysate. A 1-ml suspension of washed cells containing 109 viable organisms had aLimulus amebocyte lysate activity equivalent to 4 mg of endotoxin. This activity remained stable in samples that had been autoclaved at 121°C for 15 min. Both the autoclaved cells and filtrate of autoclaved cells were pyrogenic in inoculated rabbits. The Legionnaires' disease bacterium produces a substance or substances that have biological properties associated with endotoxin of more typical Gram-negative bacteria.  相似文献   

20.
The thermal destruction kinetics of Clostridium sordellii spores was studied in this research. Decimal reduction times (D values) for C. sordellii ATCC 9714 spores ranged between 175.60 min for D80 (the D value for spore suspensions treated at 80 °C) and 11.22 min for D95. The thermal resistance (Z) and temperature coefficient (Q10) values of spores were calculated to be as high as 12.59 °C and 6.23, respectively. At 95 °C, the relative thermal death rate and relative thermal death time of C. sordellii ATCC 9714 spores were found to be 0.0085/min and 118 min, respectively, indicating that the death rate of spores was 118 times lower at 95 °C than at 121.1 °C. Heat treatments at up to 85 °C for 120 min failed to cause a 100-fold destruction in spore populations of C. sordellii ATCC 9714. By contrast, spore counts were reduced by 2log10 cycles within 73 min and 23 min at 90 °C and 95 °C, respectively. This is the first published report of thermal inactivation of C. sordellii spores; however, further studies are needed to confirm these results in real food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号