首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and chromatographic evaluation of two novel chiral stationary phases (CSPs) deriving from (S)-tyrosine are reported. The chiral graft has been designed in order to bear both π-acid and π-basic sites, each one being connected to a distinct asymmetric centre. An intramolecular π-π interaction may take place within these CSPs, leading to an energetically favoured conformation of the chiral selector (CS). The enantiorecognition ability of these CSPs was investigated for various classes of either π-acid or π-basic racemates. It is shown that these CSPs are able to separate simultaneously π-acid and π-basic racemates. Finally, chiral recognition mechanisms and mobile phase optimization are discussed.  相似文献   

2.
Four chiral stationary phases (CSPs) derived from N-(3,5-dinitrobenzoyl)tyrosine have been synthesized. They differ by the substituent nature (methyl, ethyl, isopropyl, tert-butyl) of the aliphatic amide function. The enantiorecognition ability of these CSPs was evaluated with 10 racemates. For the majority of them, the stereoselectivity increases with the steric hindrance of the substituent. The chiral selector enantiomeric separation on the resulting CSPs has evidenced a reversal of elution order only for CS 4 on CSP 4 (tert-butyl substituent), suggesting a change in its conformation.  相似文献   

3.
A novel chiral stationary phase (CSP) derived from tyrosine is evaluated with regard to the first generation commercially available (S)-ChyRoSine-A CSP, under normalphase or reversed-phase liquid chromatographic (NPLC or RPLC) and subcritical fluid chromatographic (SubFC) conditions. The complete scope of application of these CSPs is reviewed. The novel CSP, which bears a bulkier functional group, displays a higher enantiorecognition ability than previously described (S)-ChyRoSine-A toward about 15 families of racemates, whatever the mobile phase conditions. The direct enantiomeric separation of 1,2-amino-alcohols (β-blockers) is carried out on both CSPs. Facile separations are achieved within short analysis times using SubFC mode, whereas very poor separations are obtained using NPLC mode. These results disagree with previous theories (interchangeability between NPLC and SubFC modes).  相似文献   

4.
The enantiomeric purities of optically active intermediates for β-adrenergic blocking agents prepared via enzyme-assisted processes can be determined rapidly and with high accuracy using HPLC on commercially available columns with chiral supports [Chiralcel OD, OB; Chiralpak OT(+)]. The dependence of the resolution parameters on the substitution pattern of both hydroxy compounds and their esters is reported. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Dalbavancin is a new compound of the macrocyclic glycopeptide family. It was covalently linked to 5 μm silica particles using two different binding chemistries. Approximately 250 racemates including (a) heterocyclic compounds, (b) chiral acids, (c) chiral amines, (d) chiral alcohols, (e) chiral sulfoxides and sulfilimines, (f) amino acids and amino acid derivatives, and (g) other chiral compounds were tested on the two new chiral stationary phases (CSPs) using three different mobile phases. As dalbavancin is structurally related to teicoplanin, the same set of chiral compounds was screened on two commercially available teicoplanin CSPs for comparison. The dalbavancin CSPs were able to separate some enantiomers that were not separated by the teicoplanin CSPs and also showed improved separations for many racemates. However, there were other compounds only separated or better separated on teicoplanin CSPs. Therefore, the dalbavancin CSPs are complementary to the teicoplanin CSPs. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The liquid chromatographic separation of permethrin enantiomers on chiral β‐cyclodextrin‐based stationary phase has been investigated. All four enantiomers are obtained by using simple methanol and water mobile phase, under gradient mode. The method was optimized and validated. The relationship between temperature and chromatographic parameters: k′ (capacity factor), α (separation factor) and Rs (resolution factor) was studied. Van't Hoff's curves for each enantiomer were plotted for temperature range 288–318 K. It was noticed that the response factor ratio of permethrin isomers differ and calculated value is found to be 1.66 (cis/trans, for n = 5). This method has been used for determining permethrin enantiomer ratio for a few samples of working standards and one formulation. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Three chiral stationary phases, obtained by derivatizing γ-mercaptopropylsilanized silica gel with quinine, quinidine, and cinchonidine, have been employed in the resolution of N-acyl derivatives of β-hydroxyphenethylamines. The use of circular dichroism for detection and NMR analysis of analyte–selector mixtures provides an experimental basis for preliminary assignment of a recognition mechanism.  相似文献   

8.
Nine β‐aminoketones were synthesized via Mannich reaction when benzaldehyde was condensed with some primary amines and acetophenone. The purified compounds were identified by using spectroscopic methods. The enantiomeric separation of these derivatives was carried out by high‐performance liquid chromatography (HPLC) using several coated and immobilized polysaccharide stationary phases, namely, Chiralcel® OD‐H, Chiralcel® OD, Chiralcel® OJ, Chiralpak® AD, Chiralpak® IA, and Chiralpak® IB using different mobile phases composed of n‐hexane and alcohol mixed in various ratios or pure ethanol or isopropanol. The retention behavior and selectivity of these chiral stationary phases were examined in isocratic normal phase mode. The results indicate that cellulose derivatives have higher enantioselectivity than amylose derivatives for the separation of racemic β‐amino ketones. Chirality 27:332–338, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
This paper presents a systematic comparison of liquid chromatography (LC) and supercritical fluid chromatography (SFC) for Chiralcel OD and Chiralpak AD chiral stationary phases (CSPs), performed using various chiral compounds having a known or potential pharmaceutical activity. The chiral recognition mechanisms involved in LC and SFC for the enantiomeric separation of β-blockers have been studied more particularly. As a general rule, it appears that the presence of polar functions, like primary or secondary hydroxyl or amine functions, may result in marked discrepancies in selectivity between LC and SFC. This result is peculiar to cellulose- and amylose-derived CSPs, for which the interactions involved in chiral recognition mechanism are not always well balanced, contrary to what happens for independent CSPs. In the case of chiral resolution of polar solutes or polymer-type CSPs, the analyst should try both the LC and SFC techniques to be able to choose the more stereoselective one. © 1995 Wiley-Liss, Inc.  相似文献   

10.
In this study, tert-butyl carbamoylated quinine as chiral selector was immobilized on nonporous silica (NPS) 1.5 μm particles developed by MICRA, and this new chiral stationary phase (CSP) was packed into a 3.3 cm column (4.6 mm ID). A series of various N-protected α-amino acids was chosen as chiral selectands, including 3.5-dinitrobenzyloxycarbonyl amino acids (DNZ-AAs). In order to optimize the chromatographic conditions with this novel CSP and to apply it to the resolution of acidic analytes the following parameters have been varied and studied: pH of the mobile phase, buffer concentration, and percentage of methanol or acetonitrile in the mobile phase. DryLabR software was applied to optimize enantioseparation by simulating chromatographic functions of experimental conditions for isocratic and/or gradient runs. Thus, we were able to resolve a set of test compounds within several minutes, whereby our attention was particularly drawn to the resolution of DNZ-AA derivatives. Chirality 9:157–161, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
A chiral statonary phase (CSP) derived from an N-(3,5-dinitrobenzoyl)-α-aminobenzylphosphonate has been prepared and evaluated for its utility in the direct separation of enantiomers. This CSP, 2, is structurally related to earlier N-(3,5-dinitrobenzoyl)-α-acids acid-derived phases (e.g., CSP 1), but the mode of attachment to the support is different. In scope; CSP 2 is qualitaively similar to CSP 1. However, it differs quantitatively from CSP 1, showing either greater or lesser selectivity for different pairs of enantiomers.  相似文献   

12.
We recently reported a new C3‐symmetric (R)‐phenylglycinol N‐1,3,5‐benzenetricarboxylic acid‐derived chiral high‐performance liquid chromatography (HPLC) stationary phase (CSP 1) that demonstrated better results as compared to a previously described N‐3,5‐dintrobenzoyl (DNB) (R)‐phenylglycinol‐derived CSP. Over a decade ago, (S)‐leucinol, (R)‐phenylglycine, and (S)‐leucine derivatives were used as the starting materials of 3,5‐DNB‐based Pirkle‐type CSPs for chiral separation. In this study, three new C3‐symmetric CSPs (CSP 2, 3, and 4) were prepared by combining the ideas and results mentioned above. Here we describe the synthetic procedures and applications of the new C3‐symmetric CSPs (CSP 2–CSP 4).  相似文献   

13.
The effect of mobile phase pH and dimethyloctylamine (DMOA) on the retention (k') and stereoselectivity (α) of antimalarial agents mefloquine, enpiroline, and chloroquine on the α1-acid glycoprotein chiral stationary phase (AGP-CSP) was investigated. An increase of k' with increasing pH was observed while the effect on α was a function of the solute. The magnitude and direction of changes induced by DMOA depended on pH and the structure of the solute. The results of this study are consistent with a change of the conformation of the AGP between pH 5 and 7. At pH 7, the effect of DMOA on mefloquine was relatively well described by a competitive displacement from one enantioselective site. The effect on chloroquine and enpiroline suggests a multiple-site mechanism in which both competitive and allosteric interactions are involved.  相似文献   

14.
The application of 3,5-dimethylphenyl-carbamoylated-beta-cyclodextrin (Cyclobond I 2000 DMP) and 2,6-dinitro-4-trifluoromethylphenyl-ether-beta-cyclodextrin-based (Cyclobond DNP) chiral stationary phases for the high-performance liquid chromatographic enantioseparation of unusual beta-amino acids is reported. The investigated amino acids were saturated or unsaturated alicyclic beta-3-homo-amino acids and bicyclic beta-amino acids. Prior to chromatographic analyses, all amino acids were transformed to N-3,5-dinitrobenzoyl- or N-3,5-dimethylbenzoyl form to ensure a pi-acidic or pi-basic function and to enhance the pi-acidic-pi-basic interactions between analytes and chiral selectors. Chromatographic results are given as retention, separation and resolution factors. The chromatographic conditions were varied to achieve optimal separation. The sequence of elution of the enantiomers was determined in some cases.  相似文献   

15.
《Chirality》2017,29(6):225-238
Stereoselective high‐performance liquid chromatographic and subcritical fluid chromatographic separations of 19 Nα‐Fmoc proteinogenic amino acid enantiomers were carried out by using Quinidine ‐based zwitterionic and anion‐exchanger‐type chiral stationary phases Chiralpak ZWIX(−) and QD‐AX. For optimization of retention and enantioselectivity, the ratio of bulk solvent components (MeOH/MeCN, H2O/MeOH, or CO2/MeOH) and the nature and concentration of the acid and base additives (counter‐ and co‐ions) were systematically varied. The effect of column temperature on the enantioseparation was investigated and thermodynamic parameters were calculated from the van't Hoff plots ln α vs. 1/T. The thermodynamic parameters revealed that the enantioseparations were enthalpy‐driven. The elution sequence was determined in all cases and with the exception of Fmoc‐Cys(Trt)‐OH, it was identical on both chiral stationary phases whereby the L‐enantiomers eluted before the D‐enantiomers.  相似文献   

16.
Enantiomeric separations of N‐phthaloyl (N‐PHT), N‐tetrachlorophthaloyl (N‐TCPHT), and N‐naphthaloyl (N‐NPHT) α‐amino acids and their esters were examined on several kinds of polysaccharide‐derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N‐PHT and N‐NPHT α‐amino acids and their esters. In N‐TCPHT α‐amino acids and their esters, good enantioselectivities showed Chiralcel OG for N‐TCPHT α‐amino acids, Chiralpak AD for N‐TCPHT α‐amino acid methyl esters, and Chiralcel OD for N‐TCPHT α‐amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l ‐form is preferred and more retained with electrostatic interaction in case of interaction between N‐PHT α‐amino acid derivatives and Chiralcel OF, N‐TCPHT α‐amino acid derivatives and Chiralcel OD, and N‐NPHT α‐amino acid derivatives and Chiracel OF. On the other hand, d ‐form is preferred and more retained with van der Waals interaction in case of interaction between N‐TCPHT α‐amino acid ester derivatives and Chiralcel OG and Chiralpak AD. Chirality 24:1037–1046, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Stereoselective high‐performance liquid chromatographic separations of eight sterically constrained cyclic β‐amino acid enantiomer pairs were carried out using the newly developed Cinchona alkaloid‐based zwitterionic chiral stationary phases Chiralpak ZWIX(+) and ZWIX(?). The effects of the mobile phase composition, the nature and concentrations of the acid and base additives, the counterions and temperature on the separations were investigated. The changes in standard enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°), were calculated from the linear van't Hoff plots derived from the ln α vs. 1/T curves in the studied temperature range (10–50°C). The values of the thermodynamic parameters depended on the nature of the selectors and the structures of the analytes. Unusual temperature behavior was observed on the ZWIX(?) column: decreased retention times were accompanied by increased separation factors with increasing temperature. On the ZWIX(+) column only enthalpically, whereas on the ZWIX(?) column both enthalpically and entropically driven separations were observed. The elution sequence was determined in all cases and was observed to be the opposite on ZWIX(+) and on ZWIX(?). Chirality 27:563570, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
《Chirality》2017,29(9):558-565
Three kinds of sulfated β‐cyclodextrin (S‐β‐CD), including a single isomer, heptakis‐6‐sulfato‐β‐cyclodextrin (HS‐β‐CD), degree of substitution (DS) of 7, which was synthesized in our laboratory and another two commercialized randomly substituted mixtures, a sulfated β‐cyclodextrin with DS of 7 to 11, as well as a highly sulfated‐β‐cyclodextrin with DS of 12 to 15, were used for the enantioresolution of 12 drugs (the β‐blockers, phenethylamines, and anticholinergic agents) in capillary electrophoresis. The enantioseparation under varying concentrations of S‐β‐CD and background electrolyte pH were systematically investigated and compared. Based on the experimental results, the effect of the nature of S‐β‐CD and analyte structure on the enantioseparation is discussed.  相似文献   

20.
A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号