首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物蛋白酶抑制剂在植物抗虫与抗病中的作用   总被引:13,自引:0,他引:13  
综述了植物蛋白酶抑制剂抗虫与抗病作用的研究进展.蛋白酶抑制剂广泛存在于植物体内,与植物抗虫抗病密切相关.植物蛋白酶抑制剂能抑制昆虫肠道蛋白酶,使昆虫生长发育缓慢,甚至死亡.但取食蛋白酶抑制剂后,昆虫能迅速分泌对抑制剂不敏感的蛋白酶,而使蛋白酶抑制剂无效.食物蛋白的含量和质量也影响植物蛋白酶抑制剂的抗虫效果.病原菌的感染能诱导植物产生蛋白酶抑制剂,诱导产生的蛋白酶抑制剂能抑制病原菌的生长.  相似文献   

2.
昆虫对植物蛋白酶抑制素的诱导及适应机制   总被引:11,自引:3,他引:8  
宗娜  阎云花  王琛柱 《昆虫学报》2003,46(4):533-539
植物蛋白酶抑制素是植物重要的防御物质之一,一般是分子量较小的多肽或蛋白质,能够与昆虫消化道内的蛋白酶形成复合物,阻断或削弱蛋白酶对食物中蛋白的水解,使昆虫厌食或消化不良而致死。植物蛋白酶抑制素在植物体内一般是诱导表达的,昆虫取食危害后,导致某些植物在伤口产生一种寡聚糖信息素-蛋白酶抑制素诱导因子,蛋白酶抑制素诱导因子诱导叶片局部产生植物蛋白酶抑制素,并刺激产生信号物质系统肽,通过十八烷酸途径在一系列酶的作用下产生茉莉酸,茉莉酸与受体结合,活化植物蛋白酶抑制素基因。昆虫在长期取食植物蛋白酶抑制素后会在生理及行为上产生适应性而导致不敏感,适应方式主要包括:(1)改变肠道蛋白酶对蛋白酶抑制素的敏感性;(2) 水解蛋白酶抑制素;(3)过量取食及干扰产生蛋白酶抑制素的信号通道。由于昆虫能够对植物蛋白酶抑制素产生适应,因此合理利用植物蛋白酶抑制素的抗虫作用显得十分重要。  相似文献   

3.
植物蛋白酶抑制素抗虫作用的研究进展   总被引:16,自引:2,他引:16  
王琛柱  钦俊德 《昆虫学报》1997,40(2):212-218
植物自身为抵抗昆虫等的为害,在长期进化过程中形成了复杂的化学防御体系,其中起主导作用的是一些植物化学物质。这些化合物能影响昆虫(或其它有机体)的生长、行为和群体生物学,因而又称为它感素(allelochemics)[1~3]。大多数它感素为植物的利己素,可以单一或协同对害虫起作用,构成植物的抗虫性。根据植物对昆虫取食的反应,可将植物的化学防御概括为两类:一类是组成型防御[4],即抗虫物质不依赖于昆虫的取食而存在于植物组织中;另一类是诱导型防御[5~9],即植物仅当昆虫取食时才大量合成抗虫物质。诱导型抗虫物质当然亦可以组…  相似文献   

4.
Proteinase inhibitors can be induced by wounding in shoots of tomato ( Lycopersicon esculentum [L.] Mill. cv. Moneymaker). These inhibitors are toxic to insects, but their ecological importance is not clear. Published work suggests that proteinase inhibitors may be wound-inducible in tomato only while the plants are young (less than 30 days). In the present investigation the influence of plant age on wound-inducible proteinase inhibitor was re-assessed using tomato plants grown in an outdoor polythene tunnel, with natural lighting and without supplementary heat. In contrast to previous findings, proteinase inhibitor was shown to be induced by wounding in plants of all ages. However, the systemic efficacy of wounds was much reduced in mature plants, possibly because such plants have outgrown the range of the wound-signalling system.  相似文献   

5.
Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet. Sensitivity of the fractions to inhibition by plant proteinase inhibitors was tested, and compared to the sensitivity of proteinases found in insects raised on diet to which no inhibitor had been added. The isolated chymotrypsin activity was found to be less sensitive to plant protease inhibitors. The sensitivity of the isolated trypsin activity was found to be intermediate between completely sensitive trypsins and completely insensitive forms that have been previously described. Mass spectrometry was used to identify one trypsin and two chymotrypsins in the partially purified protease fraction. The sequence features of these proteases are discussed in relation to their sensitivity to inhibitors. The results provide insight in the enzymes deployed by Helicoverpa larvae to overcome plant defence.  相似文献   

6.
Plant serine proteinase inhibitors (Pls) have the potential to restrict the growth and/or development of herbivorous insects. However, there are limitations to the efficacy of these Pls. An insect's susceptibility to a Pl is determined, at least in part, by the relative proportion of proteolytic enzyme activity in the midgut that is suppressed by that inhibitor. Insects adapt to dietary trypsin inhibitor in their host plant by secreting “inhibitor-resistant” trypsin(s). These “inhibitor-resistant” enzyme(s) may be the standard proteinase(s) secreted into the midgut (e.g., Pieris rapae), or may be enhanced following ingestion of proteinase inhibitor (e.g., Helicoverpa zea). In addition, insects may be pre-adapted to specific Pl(s), following adaptation to a Pl from the same family. For example, Pieris rapae is a crucifer specialist that is resistant to cabbage Pl, but is also resistant to Kunitz soybean trypsin inhibitor, a Pl in the same family as cabbage Pl, but from a non-host plant. The ultimate value of this pre-adaptation to herbivory by a species of insect will be determined by the number of different families of Pl in host plant(s) to which the species has adapted, and the distribution of those families among other species of plants. Thus, it is possible that the presence of a plant Pl limits herbivory by insect(s). However, multiple inhibitors, matched to the complement of enzymes in the insect's midgut, may be required to enhance this resistance of plants to herbivorous insects. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Protein engineering approaches are currently being devised to improve the inhibitory properties of plant proteinase inhibitors against digestive proteinases of herbivorous insects. Here we engineered a potent hybrid inhibitor of aspartate and cysteine digestive proteinases found in the Colorado potato beetle, Leptinotarsa decemlineata Say. Three cathepsin D inhibitors (CDIs) from stressed potato and tomato were first compared in their potency to inhibit digestive cathepsin D-like activity of the insect. After showing the high inhibitory potency of tomato CDI (M(r) approximately 21 kDa), an approximately 33-kDa hybrid inhibitor was generated by fusing this inhibitor to the N terminus of corn cystatin II (CCII), a potent inhibitor of cysteine proteinases. Inhibitory assays with recombinant forms of CDI, CCII, and CDI-CCII expressed in Escherichia coli showed the CDI-CCII fusion to exhibit a dual inhibitory effect against cystatin-sensitive and cathepsin D-like enzymes of the potato beetle, resulting in detrimental effects against 3rd-instar larvae fed the hybrid inhibitor. The inhibitory potency of CDI and CCII was not altered after their fusion, as suggested by IC(50) values for the interaction of CDI-CCII with target proteinases similar to those measured for each inhibitor. These observations suggest the potential of plant CDIs and cystatins as functional inhibitory modules for the design of effective broad-spectrum, hybrid inhibitors of herbivorous insect cysteine and aspartate digestive proteinases.  相似文献   

8.
蛋白酶抑制剂及其在抗虫基因工程中的应用   总被引:41,自引:0,他引:41  
蛋白酶抑制剂可以抑制昆虫的生长和发育,近年来在抗虫基因工程得广泛的应用。本文综述了蛋白酶抑制剂及其抗虫性,蛋白酶抑制剂转基因植物的研究概况,同时探讨了蛋白酶抑制剂在抗虫基因工程中的利用前景、存在问题和解决途径。  相似文献   

9.
植物蛋白酶抑制剂基因结构、调控及其控制害虫的策略   总被引:7,自引:1,他引:6  
程仲毅  薛庆中 《遗传学报》2003,30(8):790-796
各种不同类型的植物蛋白酶抑制剂基因已被分离,它们的特异产物(单基因或多基因组合),对昆虫体内各种生化和生理过程会产生不同程度的影响,在对昆虫和病原体防御体系中起重要作用。多种蛋白酶抑制剂重组,协同保护植物的方法,已成为害虫综合防治计划的一部分。尽管它们近期内尚不能代替化学杀虫剂,但可作为有效的替补。目前,大多数抑制剂的作用和机理正在详尽地研究中,该文综述了植物蛋白酶抑制剂的基因结构、调控与表达并讨论了培育转基因作物控制害虫的策略。  相似文献   

10.
Allelochemicals are storing in different location in plant tissues as inactive form. Number of identified compounds may now exceed 100,000. Environmental factors have an effect on allelochemicals concentration in plants. Many allelochemicals classified as toxins or deterrents for herbivorous insects. Allelochemicals play a major role in feeding or ovipositing stimulants for some specialist insects. Consumption and assimilation of herbivorous insects had affected by the type of allelochemicals in host plants. Allelochemicals have an acute or chronic toxicity on herbivorous insects. Most specialist herbivorous insects rely heavily of ingested plant allelochemicals. Plant allelochemicals may influence an insect's susceptibility to pathogens such as bacteria, fungi and nematode. Specialists herbivorous insect can be using the allelochemicals in their host plants as protection against natural enemies. Some herbivorous insects are synthesising the aggregation, attracting, alarm or mating pheromone from the allelochemicals in their host plants.  相似文献   

11.
Plant proteinase inhibitors (PIs) have been shown to reduce the growth rates in larvae of numerous insect species. On the other hand, insects can also regulate their proteinases against plant PIs. In the present study, we report the compensatory activities of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) gut proteinases against the PIs of Albizia lebbeck seeds. Total of ten proteinase inhibitor bands were detected in the seed extract of A. lebbeck. Bioassays were conducted by feeding H. armigera larvae on diet containing partially purified PIs from A. lebbeck seeds. Results show that larval growth and survival was significantly reduced by A. lebbeck PIs. We found that higher activity H. armigera gut proteinase (HGP) isoforms observed in the midgut of control larvae were inhibited in the midgut of larvae fed on test diet. Some HGP isoforms were induced in the larvae fed on PI containing test diet; however, these isoforms showed lower activity in the larvae fed on control diet. Aminopeptidase activities were significantly increased in the midgut of larvae fed on test diet. A population of susceptible and resistant enzymes was observed in the midgut of H. armigera, when fed on diet containing PIs from A. lebbeck seeds. Our initial observations indicate that H. armigera can regulate its digestive proteinase activity against non-host plant PIs, too. It is important to study the exact biochemical and molecular mechanisms underlying this phenomenon in order to develop PI-based insect control strategies.  相似文献   

12.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

13.
As the processing mechanism of all known potyviruses involves the activity of cysteine proteinases, we asked whether constitutive expression of a rice cysteine proteinase inhibitor gene could induce resistance against two important potyviruses, tobacco etch virus (TEV) and potato virus Y (PVY), in transgenic tobacco plants. Tobacco lines expressing the foreign gene at varying levels were examined for resistance against TEV and PVY infection. There was a clear, direct correlation between the level of oryzacystatin message, inhibition of papain (a cysteine proteinase), and resistance to TEV and PVY in all lines tested. The inhibitor was ineffective against tobacco mosaic virus (TMV) infection because processing of this virus does not involve cysteine proteinases. These results show that plant cystatins can be used against different potyviruses and potentially also against other viruses, whose replication involves cysteine proteinase activity.  相似文献   

14.
Potato cysteine proteinase inhibitors (PCPIs) represent a distinct group of proteins as they show no homology to any other known cysteine proteinase inhibitor superfamilies, but they all belong to the Kunitz-type soybean trypsin inhibitor family. cDNA clones for five PCPIs have been isolated and sequenced. Amino acid substitutions occurring in the limited regions forming loops on the surface of these proteins suggest a further classification of PCPIs into three subgroups. Accumulation of PCPI was observed in vacuoles of stems after treatment with jasmonic acid (JA) using immunocytochemical localisation, implying that these inhibitors are part of a potato defence mechanism against insects and pathogens. Genomic DNA analysis show that PCPIs form a multigene family and suggest that their genes do not possess any introns.  相似文献   

15.
Protective transgenes introduced into plants can be classified as directed against insects, fungi, bacteria or viruses. Mechanisms by which they protect plants in some cases are relatively simple and understood while in most cases they present only the field of rapidly progressing investigations. A brief review of the recent concepts of the resistance induced in plants against viruses by virus-derived transgenes is presented with emphasising the RNA mediated resistance. The RNA mediated resistance seems to operate in Nicotiana benthamiana plants transformed in our laboratory with cDNA of the PPV CP gene: both translatable and untranslatable versions of the cDNA made the transformed plants resistant against PPV. The resistant plants contained more than one copy of the transgene. To protect against insects plants were in our laboratory transformed with potato proteinase inhibitor II gene (PPI-II). The PPI-II gene expressed in model plants inhibited trypsin activity to an expected level.  相似文献   

16.
17.
Proteinase inhibitors are among the most promising candidates for expression by transgenic plants and consequent protection against insect predation. However, some insects can respond to the threat of the proteinase inhibitor by the production of enzymes insensitive to inhibition. Inhibitors combining more than one favorable activity are therefore strongly favored. Recently, a known small Kunitz trypsin inhibitor from Prosopis juliflora (PTPKI) has been shown to possess unexpected potent cysteine proteinase inhibitory activity. Here we show, by enzyme assay and gel filtration, that, unlike other Kunitz inhibitors with dual activities, this inhibitor is incapable of simultaneous inhibition of trypsin and papain. These data are most readily interpreted by proposing overlapping binding sites for the two enzymes. Molecular modeling and docking experiments favor an interaction mode in which the same inhibitor loop that interacts in a canonical fashion with trypsin can also bind into the papain catalytic site cleft. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. Other changes seem responsible for the relative low affinity of PTPKI for trypsin. The predicted coincidence of trypsin and papain binding sites, once confirmed, would facilitate the search, by phage display for example, for mutants highly active against both proteinases.  相似文献   

18.
The protein crystals found in potato (Solanum tuberosum L.) tuber cells consist of a single 85-kD polypeptide. This polypeptide is an inhibitor of papain and other cysteine proteinases and is capable of binding several proteinase molecules simultaneously (P. Rodis, J.E. Hoff [1984] Plant Physiol 74: 907-911). We have characterized this unusual inhibitor in more detail. Titrations of papain activity with the potato papain inhibitor showed that there are eight papain binding sites per inhibitor molecule. The inhibition constant (Ki) value for papain inhibition was 0.1 nM. Treatment of the inhibitor with trypsin resulted in fragmentation of the 85-kD polypeptide into a 32-kD polypeptide and five 10-kD polypeptides. The 32-kD and 10-kD fragments all retained the ability to potently inhibit papain (Ki values against papain were 0.5 and 0.7 nM, respectively) and the molar stoichiometries of papain binding were 2 to 3:1 and 1:1, respectively. Other nonspecific proteinases such as chymotrypsin, subtilisin Carlsberg, thermolysin, and proteinase K also cleaved the 85-kD inhibitor polypeptide into functional 22-kD and several 10-kD fragments. The fragments obtained by digestion of the potato papain inhibitor with trypsin were purified by reverse-phase high-performance liquid chromatography, and the N-terminal amino acid sequence was obtained for each fragment. Comparison of these sequences showed that the fragments shared a high degree of homology but were not identical. The sequences were homologous to the N termini of members of the cystatin superfamily of cysteine proteinase inhibitors. Therefore, the inhibitor appears to comprise eight tandem cystatin domains linked by preteolytically sensitive junctions. We have called the inhibitor potato multicystatin (PMC). By immunoblot analysis and measurement of papain inhibitory activity, PMC was found at high levels in potato leaves (up to 0.6 microgram/g fresh weight tissue), where it accumulated under conditions that induce the accumulation of other proteinase inhibitors linked to plant defense. PMC may have a similar defensive role, for example in protecting the plant from phytophagous insects that utilize cysteine proteinases for dietary protein digestion.  相似文献   

19.
Plant proteinase inhibitors (PIs) are plant defense proteins and considered as potential candidates for engineering plant resistances against herbivores. Capsicum annuum proteinase inhibitor (CanPI7) is a multi-domain potato type II inhibitor (Pin-II) containing four inhibitory repeat domains (IRD), which target major classes of digestive enzymes in the gut of Helicoverpa armigera larvae. Stable integration and expression of the transgene in T1 transgenic generation, were confirmed by established molecular techniques. Protein extract of transgenic tomato lines showed increased inhibitory activity against H. armigera gut proteinases, supporting those domains of CanPI7 protein to be effective and active. When T1 generation plants were analyzed, they exhibited antibiosis effect against first instar larvae of H. armigera. Further, larvae fed on transgenic tomato leaves showed delayed growth relative to larvae fed on control plants, but did not change mortality rates significantly. Thus, better crop protection can be achieved in transgenic tomato by overexpression of multi-domain proteinase inhibitor CanPI7 gene against H. armigera larvae.  相似文献   

20.
Pest insects such as Helicoverpa spp. frequently feed on plants expressing protease inhibitors. Apparently, their digestive system can adapt to the presence of protease inhibitors. To study this, a trypsin enzyme was purified from the gut of insects that were raised on an inhibitor-containing diet. The amino-acid sequence of this enzyme was analysed by tandem MS, which allowed assignment of 66% of the mature protein amino acid sequence. This trypsin, called HzTrypsin-S, corresponded to a known cDNA sequence from Helicoverpa. The amino acid sequence is closely related (76% identical) to that of a trypsin, HzTrypsin-C, which was purified and identified in a similar way from insects raised on a diet without additional inhibitor. The digestive properties of HzTrypsin-S and HzTrypsin-C were compared. Both trypsins appeared to be equally efficient in degrading protein. Four typical plant inhibitors were tested in enzymatic measurements. HzTrypsin-S could not be inhibited by > 1000-fold molar excess of any of these. The same inhibitors inhibited HzTrypsin-C with apparent equilibrium dissociation constants ranging from 1 nm to 30 nm. Thus, HzTrypsin-S seems to allow the insect to overcome different defensive proteinase inhibitors in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号