首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The relation between the dry matter production and species density of 27 grasslands with different fertilization histories in the Netherlands was studied. The range in species density was 12–28 species on 150 m2, the average annual dry matter production in 1983–1985 varied between 3.3 and 12.8 ton /ha. The results show an optimum curve and confirm the hump-backed model proposed by other researchers for a great variety of vegetation types. It is concluded that a high species density can be expected when the annual dry matter production above a stubble height of 5 cm, is between 4 and 6 ton/ha (ca. 4.6 - 6.0 ton seasonal maximum standing biomass). Species density can be expected to decrease when the dry matter production exceeds values of 6 - 7 ton ha-1yr-1 (ca. 6.0 - 6.7 ton seasonal maximum standing biomass). The implications of this relation for grassland restoration, aimed at an increase in species density, are discussed. The results agree with other grassland data based on the seasonal maximum standing biomass. The difference between annual production estimated by harvesting the biomass after mowing at 5 cm above the soil surface (mostly in two cuts), and the maximum seasonal standing biomass must be taken into account. It is proposed to compare data on the basis of the estimation that 62 ± 5% of the annual yield is harvested at the first cut, and that there is a linear relation between the total standing biomass, y (g/m2), and the biomass harvested above a stubble height of 5 cm, x (g/m2) that could be described by the regression line y = 1.10 x + 189.6 (r = 0.89, p < 0.01, n = 34).  相似文献   

2.
Han Olff 《Oecologia》1992,89(3):412-421
Summary Recent discussions on determinants of competitive success during succession require the study of the combined effect of light and nutrient availability on growth and allocation. These effects can be used to predict the outcome of competition at changing resource availabilities. This work is part of a study on the successional sequence in permanent grassland starting after fertilizer application is stopped, but with continued mowing, in order to restore former species-rich communities. This yields a successional sequence which proceeds from grasslands with a high nutrient availability and a closed canopy, to grasslands with a low nutrient availability and an open canopy. If allocation is related to competitive ability, species from the productive stages would be expected to allocate more biomass and nitrogen to leaves, which could make them better competitors for light, while species from the unproductive stages would allocate more biomass to roots, which could make them better nutrient competitors. This study reports on growth, specific leaf area (SLA), vertical display of leaves, and allocation of biomass and nitrogen of six grassland species from this successional sequence at 16 combinations of light and nutrient supply. Species from the poorer successional stages reached a lower final dry weight than species from the richer stages, over all treatment combinations. The experimental design made it possible to test for unique effects of the resource ratio effect of light and nutrients on allocation characteristics. This resource-ratio effect was defined as the ratio light intensity/(light intensity + nutrient supply rate), using standardized levels for the treatments. The within-species variation (plasticity) in both allocation of dry matter and nitrogen was linearly related to this resource-ratio effect. Some interspecific differences in this relationship were found which could be related to the position of the species along the successional gradient. However, the range of plasticity in allocation pattern expressed within each species was much larger than the differences between species. It was concluded that allocation differences between these grassland species are relatively unimportant, given the large amount of plasticity in these traits. Interspecific differences in SLA and vertical stature seemed to be more important in explaining the position of species along the successional gradient.  相似文献   

3.
Microorganisms are largely responsible for soil nutrient cycling and energy flow in terrestrial ecosystems. Although soil microorganisms are affected by topography and grazing, little is known about how these two variables may interact to influence microbial processes. Even less is known about how these variables influence microorganisms in systems that contain large populations of free-roaming ungulates. In this study, we compared microbial biomass size and activity, as measured by in situ net N mineralization, inside and outside 35- to 40-year exclosures across a topographic gradient in northern Yellowstone National Park. The objective was to determine the relative effect of topography and large grazers on microbial biomass and nitrogen mineralization. Microbial C and N varied by almost an order of magnitude across sites. Topographic depressions that contained high plant biomass and fine-textured soils supported the greatest microbial biomass. We found that plant biomass accurately predicted microbial biomass across our sites suggesting that carbon inputs from plants constrained microbial biomass. Chronic grazing neither depleted soil C nor reduced microbial biomass. We hypothesize that microbial populations in grazed grasslands are sustained mainly by inputs of labile C from dung deposition and increased root turnover or root exudation beneath grazed plants. Mineral N fluxes were affected more by grazing than topography. Net N mineralization rates were highest in grazed grassland and increased from dry, unproductive to mesic, highly productive communities. Overall, our results indicate that topography mainly influences microbial biomass size, while mineral N fluxes (microbial activity) are affected more by grazing in this grassland ecosystem. Received: 4 June 1997 / Accepted: 16 December 1997  相似文献   

4.
Agri-environmental measures often require postponing of grassland defoliation until summer months. We investigated how this affects agronomic characteristics, i.e., biomass production and forage quality, in species-rich grasslands in the White Carpathian Mountains, Czech Republic. Three distinct grasslands (vegetation alliances Bromion erecti, Cynosurion cristati, Violion caninae) were selected for biomass sampling in three dates: mid-May, early June and end of June. Proportions of individual species from total biomass, biomass production, crude fibre concentration, organic matter digestibility and community functional properties (forage value, leaf dry matter content, specific leaf area) were determined. Dry matter standing biomass at the end of June was highest in Bromion with 3.5 t/ha, followed by Violion with 2.7 t/ha and Cynosurion with 2.3 t/ha. A steep decline in forage quality (increase in crude fibre and decrease in organic matter digestibility) during accumulation of above-ground biomass was recorded in formerly unmanaged Bromion grassland but remarkably not in formerly grazed Cynosurion and Violion grasslands where early spring dominants were partly replaced by later developing species, Agrostis capillaris and Trifolium spp. Abundance-weighted community functional properties were consistent with results obtained from biomass chemical analyses, thus the ‘trait approach’ can be used as a suitable surrogate of costly and labor-intensive laboratory procedures. Finally, we assume that the high degree of community seasonal development in Cynosurion and Violion, indicated here by a new community seasonal development index and by development in community specific leaf area, was accountable for the stabilization of forage quality later in the vegetation season.  相似文献   

5.
Abstract. This study describes the biomass and net primary productivity of the forests of Central Himalaya occurring in areas where vegetation ranges from close-canopy broad-leaved forest to stunted open-canopy timberline vegetation. The forests studied were Acer cappadocicum forest at 2750 m, Betula utilis forest at 3150 m, and Rhododendron campanulatum forest at 3300 m altitude in Central Himalaya. With the rise in altitude the forest biomass decreased from 308.3 ton/ha in Acer forest to 40.5 ton/ha in Rhododendron forest. The decrease in net primary productivity was less steep, from 19.6 ton/ha/yr in Acer forest to 10.0 ton/ha/yr in Rhododendron forest. The production efficiency of leaves (net production per unit leaf weight) in these forests is higher than in low altitude broad-leaved forests of Central Himalaya, i.e. from 2.89 in Acer forest to 3.41 g net production/g leaf biomass/yr, against 0.81-1.55 at lower altitudes.  相似文献   

6.

Aim

Climate tends to explain phenological variations in tropical ecosystems. However, water availability and nutrient content in soil strongly affect plant communities, especially those on old, climatically buffered, infertile landscapes (OCBILs), and may impact these ecosystems’ plant reproductive phenology over time. Here, we compare the reproductive phenology of sandy and stony tropical grasslands, two co‐occurring herbaceous communities of the campo rupestreOCBILs. We asked whether flowering, fruiting and dispersal are seasonal in both grasslands, and whether these phenophases differ due to variations in soil properties. We also asked whether the phenological strategies and the number of flowers and fruits differ between these two grasslands as soil conditions vary.

Location

Serra do Cipó, Minas Gerais, Brazil.

Methods

The phenology of herbaceous species of sandy and stony grasslands was monitored monthly over two consecutive years.

Results

Plants on sandy and stony grasslands flowered and fruited throughout the year. We did not find a distinct seasonal pattern at the community level of either studied grassland. However, flowering, fruiting and seed dissemination occurred in stony grasslands mainly during the rainy season, while sandy grassland species flowered in both seasons and fruited and disseminated seed mainly during the dry season, as observed in other savanna vegetation types in the Cerrado. Flower and fruit production was higher in sandy grasslands than in stony grasslands, which may be linked to higher water retention in sandy grassland soils. In both communities, species of Cyperaceae, Eriocaulaceae and Xyridaceae contributed most to overall production, whereas Poaceae and Velloziaceae, two important families in campo rupestre, barely participated in the reproductive phenology during our 2‐yr survey.

Conclusions

Despite a strong seasonal climate, there was no reproductive seasonal pattern at the community level in campo rupestre. This first investigation of Neotropical grassland phenology indicates that the differences in soil content may constrain the grassland reproductive phenology and restrict reproduction of stony grassland species to the most favourable season. Further studies of grassland phenology are necessary to disentangle the relative importance of soil, climate and other triggers, especially fire.  相似文献   

7.
Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy.  相似文献   

8.
Bamboo and Miscanthus species are perennial low-input plants that are excellent candidates for bioenergy feedstock production. Biological characteristics, dry matter yields and fuel properties of the bamboo and Miscanthus have been studied. Genotype growth characteristics were determined by measurements of plant height, tillering, tuft diameter, and shoot diameter. To date, comparisons of biomass yields of bamboo and Miscanthus have not been previously reported in the literature. Bamboo and Miscanthus species were collected and previous articles describing the productivity of bamboo and Miscanthus were examined. Genotypes differed in plant height, tillering, tuft diameter, and shoot diameter. Nitrogen, temperature, water and plant density have effects on mature stands biomass production, which ranged from 5.9 to 49.5 tonnes/ha/yr for bamboo and 3.2 to 49.0 tonnes/ha/yr for Miscanthus. With such biomass yields, bamboo and Miscanthus should be considered as two very promising plants for biomass production in Zhejiang, China in the near future.  相似文献   

9.
Li D  Lanigan G  Humphreys J 《PloS one》2011,6(10):e26176
There is uncertainty about the potential reduction of soil nitrous oxide (N(2)O) emission when fertilizer nitrogen (FN) is partially or completely replaced by biological N fixation (BNF) in temperate grassland. The objectives of this study were to 1) investigate the changes in N(2)O emissions when BNF is used to replace FN in permanent grassland, and 2) evaluate the applicability of the process-based model DNDC to simulate N(2)O emissions from Irish grasslands. Three grazing treatments were: (i) ryegrass (Lolium perenne) grasslands receiving 226 kg FN ha(-1) yr(-1) (GG+FN), (ii) ryegrass/white clover (Trifolium repens) grasslands receiving 58 kg FN ha(-1) yr(-1) (GWC+FN) applied in spring, and (iii) ryegrass/white clover grasslands receiving no FN (GWC-FN). Two background treatments, un-grazed swards with ryegrass only (G-B) or ryegrass/white clover (WC-B), did not receive slurry or FN and the herbage was harvested by mowing. There was no significant difference in annual N(2)O emissions between G-B (2.38±0.12 kg N ha(-1) yr(-1) (mean±SE)) and WC-B (2.45±0.85 kg N ha(-1) yr(-1)), indicating that N(2)O emission due to BNF itself and clover residual decomposition from permanent ryegrass/clover grassland was negligible. N(2)O emissions were 7.82±1.67, 6.35±1.14 and 6.54±1.70 kg N ha(-1) yr(-1), respectively, from GG+FN, GWC+FN and GWC-FN. N(2)O fluxes simulated by DNDC agreed well with the measured values with significant correlation between simulated and measured daily fluxes for the three grazing treatments, but the simulation did not agree very well for the background treatments. DNDC overestimated annual emission by 61% for GG+FN, and underestimated by 45% for GWC-FN, but simulated very well for GWC+FN. Both the measured and simulated results supported that there was a clear reduction of N(2)O emissions when FN was replaced by BNF.  相似文献   

10.
Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.  相似文献   

11.
不同自然地带杉木林的生物生产力   总被引:25,自引:1,他引:24       下载免费PDF全文
本文对不同自然地带杉木林的生物生产力进行了比较,结果表明:中带(相当于中亚热带)生产力最高,其后依次为南带(相当于南亚热带)和北带(相当于北亚热带)。  相似文献   

12.
Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.  相似文献   

13.
Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production.  相似文献   

14.
湖南省会同县两个森林群落的生物生产力   总被引:18,自引:1,他引:18       下载免费PDF全文
本文就我国亚热带分布最广、最有代表性的两个森林群落——杉木人工林和马尾松天然次生林的生物生产力进行了测定,并从群落的现存量、营养元素和叶绿素含量以及群落中光照分布和消光系数等方面进行分析和比较。  相似文献   

15.
The revegetation of abandoned farmland significantly influences soil organic C (SOC) and total N (TN). However, the dynamics of both soil OC and N storage following the abandonment of farmland are not well understood. To learn more about soil C and N storages dynamics 30 years after the conversion of farmland to grassland, we measured SOC and TN content in paired grassland and farmland sites in the Zhifanggou watershed on the Loess Plateau, China. The grassland sites were established on farmland abandoned for 1, 7, 13, 20, and 30 years. Top soil OC and TN were higher in older grassland, especially in the 0–5 cm soil depths; deeper soil OC and TN was lower in younger grasslands (<20 yr), and higher in older grasslands (30 yr). Soil OC and N storage (0–100 cm) was significantly lower in the younger grasslands (<20 yr), had increased in the older grasslands (30 yr), and at 30 years SOC had increased to pre-abandonment levels. For a thirty year period following abandonment the soil C/N value remained at 10. Our results indicate that soil C and TN were significantly and positively correlated, indicating that studies on the storage of soil OC and TN needs to focus on deeper soil and not be restricted to the uppermost (0–30 cm) soil levels.  相似文献   

16.
Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.  相似文献   

17.
Question: Do severe winter flood events lift the nutrient limitation of biomass production in a river floodplain? How does this affect plant species richness? How long do the effects last? Location: Floodplain grassland on calcareous sandy loam near river Rhine in The Netherlands. Methods: Plots were fertilised with four treatments (control, N, P, N+P) for 21 years; plant species composition, vegetation biomass and tissue nutrient concentrations were determined every year between 1985 and 2005. Results: Fertilisation with N generally increased biomass production and reduced species richness, but these effects varied over time. During the first four years of the experiment, biomass production appeared to be co‐limited by N and P, while N fertilisation dramatically reduced plant species richness; these effects became weaker subsequently. Following two extreme winter floods in 1993–94 and 1994–95 and a drought in spring 1996, the effects of fertilisation disappeared between 1998 and 2001 and then appeared again. Flooding caused an overall reduction in species richness (from c. 24 to 15 species m‐2) and an increase in biomass production, which were only partly reversed after ten years. Conclusions: Long time series are necessary to understand vegetation dynamics and nutrient limitation in river floodplains, since they are influenced by occasional flood and drought events, whose effects may persist for more than ten years. A future increase in flooding frequency might be detrimental to species richness in floodplain grasslands.  相似文献   

18.
北方牧区草地资源分类经营机制与可持续发展   总被引:4,自引:0,他引:4  
刘兴元  梁天刚  龙瑞军  郭正刚 《生态学报》2009,29(11):5851-5859
草地是畜牧业生产和生态保护的重要资源.在短期经济利益的驱动下造成北方牧区草地大面积退化和荒漠化、生产力下降、自我恢复能力降低、水土流失加剧和涵养功能减弱,对牧区经济发展、社会稳定和生态安全构成了威胁,严重影响着草地畜牧业的可持续发展.以新疆阿勒泰为例,依据草地资源的生产经济性能、生态服务价值重要性和季节放牧利用特征,构建了基于GIS 技术的草地生产力指数、草地生态服务价值指数和草地资源分类经营的功能分区模型,建立以主导功能和时空格局为主的草地资源分类经营调控机制,将阿勒泰牧区的草地从空间上划分为经济功能区、混合功能区和生态功能区.结果表明:(1)经济功能区,以获取最大的经济效益为目的,面积约648.69万hm2,占总可利用草地面积的65.8%,主要分布在平原荒漠;(2)生态功能区,以生态保护和社会效益为目的,面积约136.4万hm2,占总可利用草地面积的13.9%,主要分布在平原荒漠草原、山地草原、高寒草甸;(3)混合功能区,在适度利用条件下,生态效益与经济效益并重,面积约200.1万hm2,占总可利用草地面积的20.3%,主要分布在山地草原化荒漠、山地草甸草原、平地草甸、山地荒漠草原、山地草甸和高寒草原.通过对草地资源的分类经营,将畜牧业生产重心转向经济功能区,转移生态功能区的放牧家畜,减轻混合功能区的放牧压力,形成草地资源在功能、系统、时序和空间的耦合结构,实现牧区草地资源利用的可持续发展.  相似文献   

19.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号