首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McKey's (1975) hypothesis that avian dispersers with a specialized gut provide higher quality seed dispersal than unspecialized frugivores was tested using grey mistletoe (Amyema quandang) fruits, and captive mistletoebirds (Dicaeum hirundinaceum) and spinycheeked honeyeaters (Acanthagenys refogularis) in arid South Australia. Mistletoebirds have a specialized gut, unlike spiny-cheeked honeyeaters. The gut passage time of A. quandang fruits through mistletoebirds was 820±29 s (mean±SE, n=188), compared to 2434±36 s (n=436) for honeyeaters. The seeds defecated by both bird species were deployed on twigs of host trees. Despite the longer retention time of fruit in the gut of honeyeaters, the germination percentage of seeds defecated by mistletoebirds (85% of 485 seeds) and honeyeaters (81% of 485 seeds) did not differ significantly 1 week after deployment. However, after 5 months, a significantly greater proportion of seedlings had established from seeds passed by mistletoebirds (42.7%) than from seeds defecated by honeyeaters (31.1%). The data support the notion that the more gentle treatment of seeds in the gut of specialized dispersers translates into higher seedling establishment.  相似文献   

2.
Obtaining adequate levels of dietary protein is essential for the physiology of consumers. This presents potential problems for frugivorous birds because fruit is generally low in protein rendering it nutritionally inadequate and potentially explaining the rarity of exclusive frugivory in birds. We addressed this issue by determining the isotope composition (15N/14N) in the whole blood of two mistletoe consumers, that is, painted honeyeater (Grantiella picta, Meliphagidae) and mistletoebird (Dicaeum hirundinaceum, Dicaeidae) during the grey mistletoe (Amyema quandang, Loranthaceae) fruiting peak in a semi‐arid woodland, NSW, Australia. Grey mistletoe fruit pulp and arthropods were isotopically distinct (mean δ15N fruit 4.4‰vs. arthropods 7.1‰), thus readily discriminated using the stable isotope approach. Painted honeyeaters and mistletoebirds formed a single group based on their mean δ15N values and, on average, assimilated approximately half of their nitrogen from mistletoe fruit although individual variation was high. The importance of nitrogen derived from mistletoe fruit did not track its abundance in the environment, suggesting that at least during peak fruiting, this resource is not limiting at this site. Researchers should account for intraspecific variation and take a cautious approach when reconstructing diets using stable isotopes by incorporating individual‐based analyses rather than presenting mean values alone. This is the first study to use the isotope approach to investigate the dietary relationship of mistletoe frugivores and mistletoe fruit and has implications for our understanding of the nutritional ecology of frugivores and its functional relationship to ecosystem processes such as seed dispersal.  相似文献   

3.
Abstract At the scale of an individual host, mistletoes are aggregated in space, resulting from the preferential perching of mistletoe dispersers on previously infected plants. We hypothesized that the landscape scale movement patterns of mistletoe dispersers will also promote the aggregation of mistletoes. This hypothesis was tested by predicting the seed shadow for box mistletoe Amyema miquelii (Loranthaceae) and patterns of seed rain, by combining radiotelemetry data of mistletoebird Dicaeum hirundinaceum (Dicaeidae) movements with existing gut passage time data. Thirteen adult mistletoebirds had a mean home range of 20 ha, with core activity areas of approximately 1 ha, and birds more often used areas with high levels of mistletoe infestation. The predicted seed shadow of box mistletoe was leptokurtic, with a 12%, 35% and 23% probability of mistletoe seed being deposited 0 m (same host tree), 1–50 m and 51–100 m from the host tree, respectively. Although rare (3% probability), long distance dispersal of mistletoe (>500 m) can occur. The predicted patterns of seed rain were strongly aggregated, with birds dispersing large amounts of seed (>66 000 per ha) in areas with higher mistletoe infestation levels. The movements of mistletoe dispersers will therefore promote mistletoe aggregation at a landscape scale.  相似文献   

4.
Recent work at several central South Island sites has shown that the bird-pollinated mistletoe Peraxilla tetrapetala (Loranthaceae) is extensively pollen-limited. We studied the diet, time-budget, and densities of its principal pollinator, bellbirds (Anthornis melanura, Meliphagidae), at Craigieburn to find out what aspect of bellbird ecology may be limiting pollination. Direct observations of bellbird diets showed that they are annual generalists on invertebrates (diet range 22-85% of food items) and honeydew (diet range 2-45%), and concentrate seasonally on mistletoe fruit (18-60%) and mistletoe nectar (27-58%) when available. The bellbirds at Craigieburn are more insectivorous than New Zealand's other two honeyeaters (tui and stitchbirds). In general, bellbirds are most similar to the short-billed guild of Australian honeyeaters in their beak morphology, foraging behaviour, and diet choice, but with a greater importance of fruit in the bellbird diet. The annual mean number of bellbirds recorded per 5-minute count (1.05) at Craigieburn was relatively low, even compared to other eastern South Island sites, which have lower counts of bellbirds than the western South Island and offshore islands. As mistletoe fruit and nectar were preferred foods when in season, and bellbird counts were low at Craigieburn, we conclude that it is the probable low number of bellbirds in the area, and not their choice of diet, which limits mistletoe pollination and dispersal. The bellbird population at Craigieburn did not appear to be food limited as bellbirds spent less than 20% of their time feeding, and the number of hours per day bellbirds spent feeding and foraging did not change significantly from winter to summer while food resources became more plentiful. Other pressures that limit the bellbird population size, particularly predation from introduced mammals, would appear more likely explanations for poor pollination and disperser services to mistletoes at Craigieburn.  相似文献   

5.
NICK REID 《Austral ecology》1991,16(4):457-469
Small frugivorous birds that feed largely on the fruits of stem-parasitic mistletoes have independently evolved in various parts of the world. Local populations of mistletoes may be dispersed almost exclusively by these birds. Four attributes of mistletoe dispersal systems may have enhanced the evolution of reciprocal dependence between mistletoes and specialized dispersers: (1) Safe sites for mistletoe seeds (i.e. the young branches of a compatible host) are precisely defined in space and time. (2) The viscidity of mistletoe seeds induces smaller dispersers to deposit seeds in safe sites. (3) Frugivores differ markedly in the efficiency with which they disperse mistletoe seeds to safe sites. (4) Relatively large viscid fruits and adaptive fruiting displays exclude or deter most members of the potential disperser guild. Some birds have anatomical adaptations as a result of dietary specialization on mistletoe fruit, and some mistletoes have fruiting displays that target specialized birds or a narrow disperser spectrum. Coevolution between guilds of mistletoes and specialized dispersers is therefore probable. The uncoupled selective pressures that might have driven their coevolution are the mistletoes’ provision of fruit crops that are unavailable to more generalized frugivores, in return for seed dispersal to the small stems most suitable for infection. As in other mutualistic seed dispersal systems, phylogenetic, ecological and life history factors constrain the evolution of monophyletic interdependence, resulting in varying degrees and patterns of reciprocal specificity between mistletoes and dispersers.  相似文献   

6.
Many species of honeyeaters and other nectar-feeding birds occur in most habitats in South Australia. They frequently feed on nectar of the same species of plants. A succession of species of plants provide nectar for birds throughout the year. Nectar is most abundant in winter and early spring and least abundant in summer and autumn. There is more nectar per flower and more flowers in winter and spring. Nectar is often depleted by honeyeaters, and sometimes other visitors (silvereyes, lorikeets and insects) between December and May. It is at times reduced to a level at which it is uneconomical for some species to exploit. There are seasonal movements of honeyeaters into areas of abundant nectar and out of these areas when nectar becomes scarce. Breeding coincides with peak abundance of nectar. Diversity of honeyeaters is probably maintained by an interaction of two types of competition, exploitation and interference. The larger species use the richest sources of nectar and aggressively exclude the smaller species (interference) whereas the smaller species can use poorer sources of nectar because their energy requirements are less (exploitation).  相似文献   

7.
Specialist frugivores are the dominant consumers of mistletoe fruit in many regions and have been shown to intensify infections of host plants as a result of their rapid gut passage rates and dependence on existing infections. The role of specialist frugivores in long distance dispersal of mistletoe and establishment of new infections is unclear, and has not been explicitly evaluated previously. Here we critically examine the premise that specialists are the dominant dispersers by examining the role of an Australian mistletoe specialist (mistletoebird Dicaeum hirundinaceum Dicaeidae) in dispersing mistletoe (Amyema preissii Santalales: Loranthaceae) seeds beyond infected host stands. We use two primary lines of evidence – presence of birds using remote call recorders, and presence of dispersed seeds via surveys for defecated seeds on host branches. The observed and inferred movements of the mistletoebird were wholly restricted to habitat patches containing mistletoe, and this bird was not observed to transport seeds to nearby uninfected host stands within the study system. While mistletoe specialists may provide much of the within‐stand dispersal service for mistletoes, this serves only to aggregate and intensify existing infections. We suggest that long distance dispersal of mistletoe seeds beyond existing hosts and infection centres is not performed by these dietary specialists, these services more likely to be provided by generalist frugivores and other occasional mistletoe fruit consumers.  相似文献   

8.
Several researchers have attempted to calculate whether depression of nectar resources by Australian honeyeaters is likely to limit their densities. Such calculations can be misleading, however, and do not directly test whether birds depress nectar availability. I monitored changes in nectar availability during the 8–9 months that honeyeaters bred in heathland near Sydney, and caged inflorescences to test whether nectar availability was being depressed by birds. There were pronounced seasonal changes in nectar availability in each of 2 years, and caging substantially increased the amounts of nectar in inflorescences during months when nectar production was low. The effects of caging must have resulted from exclusion of honeyeaters, as: (i) open-ended cage controls showed that the effects of caging resulted from exclusion of foragers, not from artifacts of caging; (ii) day-only and night-only caging showed that nectar was depleted only during the day: and (iii) observations showed that cages did not exclude any diurnal foragers other than honeyeaters. Resident honeyeaters spent more time foraging during months when nectar was scarce, implying that the rates at which they could obtain nectar were affected by changes in nectar availability. It is therefore possible that the depletion of nectar by honeyeaters could have limited their densities. However. I argue that such limitation could only be inferred safely if nectar-supplementation experiments showed survival and/or reproduction to be limited by nectar availability.  相似文献   

9.
Abstract The effect of mistletoes Amyema preissii on the survival of fast growing trees of Acacia victoriae was investigated in arid central Australia. Trees with different levels of experimentally induced mistletoe infection were monitored for 4 years. Analysis of covariance failed to reveal a treatment effect of infection on host survival. Loss of trees early in the experiment reduced the statistical power of the analysis, and variable infection success and the establishment of bird-dispersed mistletoes on experimental trees blurred the distinction between treatments. However regression analysis showed a significant relationship between the volume of mistletoe and tree mortality. The implications for the design of future experiments are discussed.  相似文献   

10.
李慢如  张玲 《生物多样性》2020,28(7):833-2627
桑寄生植物是一类自身可以进行光合作用的半寄生性灌木, 作为森林和林地的关键性资源可为鸟类等动物分类群提供重要的食物资源和巢址, 并影响当地的生物多样性。桑寄生植物隶属于檀香目, 包括5科88属约1,600种, 除极地、部分高寒和干旱沙漠地区外均有分布。桑寄生植物繁殖物候的研究对于了解“寄主植物-桑寄生植物-传粉/种子散布者系统”中物种相互作用网络的维持机制、生态系统结构的稳定性具有重要意义。本文综述了桑寄生植物在景观、群落和种群尺度上繁殖物候的表现类型, 发现桑寄生植物主要通过繁殖物候异步的方式延长物候期, 维持与传粉/种子散布者持久的互惠关系以保障自身种群的繁衍。该领域经过近年的发展, 已从单一地描述繁殖物候的表现类型到探究系统中寄主植物、传粉/种子散布者以及桑寄生植物自身生物学特性等因素的分析。通过前人的研究发现桑寄生植物繁殖物候对于该系统内相互作用的双方或多方有重要的适应意义, 今后首先应该对桑寄生植物的基础生物学背景进行研究, 然后还应加强实验验证, 进行多因素综合分析等来探讨桑寄生植物繁殖物候的生态学意义。  相似文献   

11.
The bills and tongues of nectar-feeding birds differ from continent to continent. The major differences are that: (i) the tongues of A Australian honeyeaters are broader any more fimbricated at the tip than the bifurcated tongues of sunbirds and hummingbirds; (ii) the bills of hummingbirds are more uniformly narrow and taper less markedly towards their tips than those of sun-birds and honeyeaters; and (iii) bill curvatures are generally greater for sunbirds and honey-creepers than for hummingbirds. A variety of hummingbirds has straight or even slightly upturned bills, while bills for all sunbirds, honeycreepers and honeyeaters are decurved to some extent. Despite differences in tongue morphology, hummingbirds, sunbirds and honeyeaters extract nectar at a similar range of rates, averaging approximately 40 γL s?1 from ad libitum feeders, and 1–15 γL?1 from flowers. All tongues collect nectar by capillarity, with licking rates of 6–17 s?1. Licking behaviour has been little studied, although speeds of licking respond to changes in sugar concentration and corolla length. The tongues of honeyeaters are broad, and may need to be brush-tipped in order to allow capillary collection of nectar. Brush-tipped tongues can cover large surface areas on each lick, and may allow honeyeaters to exploit nectar and honeydew that is thinly spread over large surface areas. Bill lengths of nectarivorous birds are similar in all regions, though species of hummingbird have the shortest and longest bills. Bill lengths largely determine the range of floral lengths that can be legitimately probed. Maximum floral lengths exceed bill lengths, since hummingbirds, sunbirds and honeyeaters protrude their tongues beyond the tips of their bills. Rates of nectar extraction, however, decline rapidly once the floral length exceeds bill length. Decurved bills may have evolved in honeyeaters and sunbirds to enable perching birds to reach flowers at the ends of branches more easily. Consistent differences in bill length between the sexes suggest that males and females may exploit different floral resources or different proportions of the same resources. For honeyeaters and sunbirds, males have longer bills than females, but the reverse is true for many hummingbirds.  相似文献   

12.
Abstract For 150 years mistletoe host-resemblance has been an unsolved puzzle. Mimicry, camouflage, host protection and shape modification by the host tree have all been advanced as possible solutions. No extended examination of herbivory of host-parasite pairs has ever been done, however, to put these explanations to the test. The study was carried out in northeastern Australia from March to July 1994. Rates of leaf herbivory were estimated for seven individuals of Amyema biniflora Barlow (a cryptic mistletoe species), Dendrophthoe glabrescens (Blakely) Barlow (a non-cryptic mistletoe species) and their host trees (Eucalyptus tessellaris F. Muell. and Eucalyptus platyphylla F. Muell., respectively). In addition three measures of leaf palatability–nitrogen content, moisture content and toughness–were also assessed. Variability in mistletoe leaf shape was quantified by measuring the leaf widths of mistletoes on a variety of host tree species. Mistletoes sustained greater levels of herbivory compared to their host trees, but herbivory did not differ between mistletoe species. The non-cryptic mistletoe had lower levels of nitrogen compared to its host tree, but there was no difference in nitrogen levels between the cryptic mistletoe and its host. The moisture content of mistletoe leaves was greater than that of their hosts but not between mistletoe or host species. The mistletoe species had tougher leaves than their host trees. Leaf shape was different for one species of mistletoe growing on different host trees, but constant for another species of mistletoe. The results contradict, in some crucial aspect, all of the mimicry hypotheses currently on offer.  相似文献   

13.
Beak, wing, leg and intestinal lengths, and gizzard widths, were all significantly related to body mass in 51 honeyeater species from Australia, 48 honeyeater species from New Guinea and 31 purely insectivorous passerine bird species from Australia. The nectar-feeding honeyeaters had smaller gizzards and intestines than wholly insectivorous birds of comparable size, although their wing and leg lengths did not differ; New Guinean and Australian honeyeaters were similar in these respects. Overall, honeyeaters had longer beaks than pure insectivores. Among Australian honeyeaters, those genera consuming more nectar than insects had longer beaks than the less nectarivorous, more insectivorous genera. Indeed, the latter group had beaks comparable in length to wholly insectivorous birds. All morphological differences revealed were attributable to known differences in diet.  相似文献   

14.
The foraging behaviour of Australian honeyeaters is reviewed in terms of diet, foraging selectivity, foraging flight mode, quality and quantity of nectar encountered per flower, flower densities encountered and effect of predation. At the same time comparisons are made between honeyeaters and hummingbirds. These two groups of birds are superficially similar. Both feed on nectar and insects. Both tend to have long curved bills and tongues adapted for removal of nectar from flowers. Both tend to feed at long, red flowers. However, on close inspection, honeyeaters and hummingbirds are quite dissimilar. For example, many honeyeaters include fruit in their diets. Hummingbirds almost never eat fruit. Honeyeaters appear to be considerably less nectarivorous and more insectivorous than hummingbirds. Honeyeaters are, for the most part, larger than hummingbirds and they usually perch while feeding whereas hummingbirds usually hover. Honeyeaters but not hummingbirds often flock while feeding. Predation appears to be considerably more important for honeyeaters than for hummingbirds. Territorial defense of flowers seems common in hummingbirds but uncommon in honeyeaters. These differences are discussed in detail and explanations are offered for them wherever possible.  相似文献   

15.
一种泛性桑寄生植物繁殖物候异步性的寄主介导效应 寄主介导效应被认为会导致半寄生性的桑寄生植物的繁殖物候异步性,并由此为与桑寄生植物互惠共生的传粉者和种子散布者提供更长时间的食物资源供应,但目前关于此方面的研究还缺乏相关的实证数据。本研究以广泛分布于中国西南西双版纳地区的一种泛性桑寄生科植物五蕊寄生(Dendrophthoe pentandra)为材料,每周监测其开花、结果物候,检测了其开花和结果物候是否呈季节性格局,量化了五蕊寄生繁殖物候的异步程度,并检测了影响该植物始花期早晚的因素。最后,本研究还检验了五蕊寄生繁殖物候的异步性随寄主种类数量变化的效应。研究结果表明:(i)在连续两年的物候观测中五蕊寄 生的花期和果期都呈单峰分布格局;(ii)始花期显著受到植物大小和光照强度的影响,即冠幅越大和受光程度越高的植物个体有更早的始花期和更长的花期和果期;(iii)不同的寄主种类对五蕊寄生的繁殖物候有显著的影响,但与假设相反的是,随着寄主种类数量的增加,五蕊寄生繁殖物候的异步性没有显著提高。这项研究表明,在解释泛性桑寄生植物的繁殖物候异步性及寄主种类的数量对其影响的生态学意义还需进行更深入的探究。  相似文献   

16.
Many species of Eucalyptus in Australia provide copious amounts of nectar during their reproductive seasons. The nectar is used by many animal species but especially by birds, insects and some bats, which act as pollinators. One of the major features of eucalypt flowering in southern Australia is the patchy, asynchronous flowering of different species, which appears to drive mass nomadism of nectarivorous birds among regions and among habitats. Here we explore whether flowering asynchrony or climate is primarily responsible for the influxes and effluxes of vast numbers of nectarivorous birds in central Victoria, Australia. By using a structured sampling program, we show that winter flowering by red ironbark Eucalyptus tricarpa is the most likely agent controlling avian-nectarivore dynamics rather than climatic differences among regions. Densities and species richness of nectarivores, and numbers of nectarivory events, are all closely related to measures of flowering intensity. However, nonnectarivores, such as insectivores and granivores, show no relationships with either habitat or region. We discuss how dependence on a patchily distributed but highly rewarding resource such as nectar influences population densities and community structure in birds.  相似文献   

17.
March WA  Watson DM 《Oecologia》2007,154(2):339-347
The importance of litter in regulating ecosystem processes has long been recognised, with a growing appreciation of the differential contribution of various functional plant groups. Despite the ubiquity of mistletoes in terrestrial ecosystems and their prominence in ecological studies, they are one group that have been overlooked in litter research. This study evaluated the litter contribution from a hemiparasitic mistletoe, Amyema miquelii (Lehm. ex Miq.) Tiegh., in an open eucalypt forest (Eucalyptus blakelyi, E. dwyeri and E. dealbata), at three scales; the forest stand, single trees and individual mistletoes. Litter from mistletoes significantly increased overall litterfall by up to 189%, the amount of mistletoe litter being proportional to the mistletoe biomass in the canopy. The high litter input was due to a much higher rate of mistletoe leaf turnover than that of host trees; the host litterfall and rate of leaf turnover was not significantly affected by mistletoe presence. The additional litter from mistletoes also affected the spatial and temporal distribution of litterfall due to the patchy distribution of mistletoes and their prolonged period of high litterfall. Associated with these changes in litterfall was an increase in ground litter mass and plant productivity, which reflects similar findings with root-parasitic plants. These findings represent novel mechanisms underlying the role of mistletoes as keystone resources and provide further evidence of the importance of parasites in affecting trophic dynamics.  相似文献   

18.
Mistletoes are dispersed primarily by frugivorous birds and have highly aggregated distributions at multiple scales. Mistletoe specialist frugivores have been found to intensify infections within infected hosts and stands, and this is considered the most likely mechanism underlying clumped mistletoe distributions at these scales. How these patchy infections first develop and whether seed dispersers also contribute to aggregated mistletoe distributions at landscape and regional scales have not been evaluated. Here we predict the mistletoe seed shadow of a dietary generalist (spiny‐cheeked honeyeater Acanthagenys rufogularis Aves: Meliphagidae), by combining our observations of movements via radio telemetry with previous data on gut passage times to estimate seed dispersal curves for individual birds. There was considerable variation in movements and inferred seed dispersal between individuals, with non‐breeding birds predicted to regularly transport Amyema quandang (Santalales: Loranthaceae) seeds up to 700 m; well beyond the boundaries of an existing mistletoe infection. As the first work to consider explicitly the distance component of mistletoe seed dispersal by dietary generalists, this study poses further questions about the relative seed dispersal roles of dietary generalists and mistletoe specialists. Moreover, our findings highlight considerable intraspecific variation in movement and foraging behaviour, suggesting gender and reproductive status of birds should be considered explicitly when quantifying seed dispersal services.  相似文献   

19.
Three new species of Acizzia are described from Australian mistletoe (Loranthaceae: Amyema spp.). These are: A. loranthacae sp. n., A. amyemae sp. n. and A. pendulae sp. n. They are characterised by: male proctiger with prominent posterior lobe; antenna 1.9–2.9 times width of head; forewing with costal break and pterostigma, with pattern in A. amyemae and A. pendulae but not in A. loranthacae ; and female proctiger simple in A. amyemae and A. pendulae but with prominent dorso-apical process in A. loranthacae . The Loranthaceae is a new host family record for Acizzia . Given the probable radiation of Acizzia on mimosaceous hosts, its occurrence on eucalypt-inhabiting mistletoe, yet its apparent absence from mistletoes on Acacia, is discussed.  相似文献   

20.
Summary In Australia, diurnal courses of leaf conductance and transpiration of hemiparasitic mistletoes (Loranthaceae) and their hosts were measured using steady-state porometers under conditions of partial drought and high evaporative demand. The sites spanned a diversity of climatic regions ranging from the subtropical arid zone with winter rainfall, through the subtropical arid zone with summer rainfall to the tropical summer rainfall zone. With one exception (Acacia farnesiana with deciduous leaves), the hosts were trees or shrubs with evergreen, sclerophyllous leaves or phyllodes.The measurements confirm previous observations that mistletoes transpire at higher rates than their hosts. For adult leaves from all of the 18 different host/mistletoe pairs investigated, the daily average leaf conductances were higher in the parasites than in their hosts. The ratios ranged from 1.5 to 7.9. In the most extreme case,Amyema maidenii had a daily rate of water loss 8.9 times higher than its hostAcacia cowleana. Hoever, the parasites did not exhibit unlimited transpiration. Despite high water loss rates, leaf conductance showed large and consistent changes during the course of the day, indicating definite stomatal regulation. The typical diurnal pattern of conductance in both mistletoes and hosts consisted of an early morning peak followed by a continuous decrease throughout the remainder of the day. There was no abrupt decrease in leaf conductance of the parasites that might be interpreted as a threshold response with respect to internal water potential. In most cases, the continuous stomatal closure occurred without substantial changes in leaf water potential over a time span of several hours. The decrease in leaf conductance was correlated with an increase in leaf-to-air water vapor difference, which was associated with increasing leaf temperatures. It seems probable that external humidity plays a major role in the stomatal response. Diurnal courses of leaf conductance of the host/parasite pairs usually showed similar general patterns, even when the absolute rates were quite different. Thus, mistletoes not only control their water loss by stomatal action but this regulation seems to occur in coordination with the stomatal response of their hosts.The integrated mistletoe/host system must also endure severe drought conditions. Controlled water use is necessary for long-term survival of the host. Assuming stomatal behavior in the host is well adapted to ensure its existence, then similar performance in the mistletoe would promote survival of both host and parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号