首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential and integral cross sections for elastic electron collisions with uracil, cytosine, guanine, adenine and thymine have been calculated using the independent atom method with a static-polarization model potential for incident energies ranging from 50 to 4000 eV. Total cross sections for single electron-impact ionization of selected DNA and RNA bases have also been calculated with the binary-encounter-Bethe model from the ionization threshold up to 5000 eV. Cross sections within the investigated energy range, can be related to the molecular symmetry, the number of target electrons and molecular size; elastic and ionization processes are most efficient for guanine and adenine molecules, while the lowest cross sections were obtained for the uracil molecule. The ionization cross sections for cytosine, thymine, adenine and guanine are compared with those recently obtained with a semi-classical and binary-encounter-Bethe formalisms. No theoretical and experimental data for elastic electron scattering from DNA and RNA bases are available, but comparisons with calculations for molecules of similar size and geometry allows the validity of the theoretical approach to be verified.  相似文献   

2.
矿物是无机自然界吸收与转化能量的重要载体,其与微生物的胞外电子传递过程体现出矿物电子能量对微生物生长代谢与能量获取方式的影响。根据电子来源与产生途径,以往研究表明矿物中变价元素原子最外层或次外层价电子与半导体矿物导带上的光电子是微生物可以利用的两种不同胞外电子能量形式,其产生及传递方式与微生物胞外电子传递的电子载体密切相关。在协同微生物胞外电子传递过程中,矿物不同电子能量形式之间既有相似性亦存在着差异。反过来,微生物胞内-胞外电子传递途径也影响对矿物电子能量的吸收与获取,进而对微生物生长代谢等生命活动产生影响。本文在阐述矿物不同电子能量形式产生机制及其参与生物化学反应的共性和差异性特征基础上,综述了微生物获取矿物电子能量所需的不同电子载体类型与传递途径,探讨了矿物不同电子能量形式对微生物生长代谢等生命活动的影响,展望了自然条件下微生物利用矿物电子能量调节其生命活动、调控元素与能量循环的新方式。  相似文献   

3.
Lee CS 《Molecules and cells》2000,10(6):723-727
The mechanisms of anticancer activity of 2,5-diaziridinyl-1,4-benzoquinone (DZQ) are believed to involve the alkylation of guanine and adenine bases. In this study, it has been investigated whether bacterial and mammalian 3-methyladenine-DNA glycosylases are able to excise DZQ-DNA adduct with a differential substrate specificity. DZQ-induced DNA adduct was first formed in the radiolabeled restriction enzyme DNA fragment, and excision of the DNA adduct was analyzed following treatment with homogeneous 3-methyladenine-DNA glycosylase from E. coli, rat, and human, respectively. Abasic sites generated by DNA glycosylases were cleaved by the associated lyase activity of the E. coli formamidopyrimidine-DNA glycosylase. Resolution of cleaved DNA on a sequencing gel with Maxam-Gilbert sequencing reactions showed that DZQ-induced adenine and guanine adducts were very good substrates for bacterial and mammalian enzymes. The E. coli enzyme excises DZQ-induced adenine and guanine adducts with similar efficiency. The rat and human enzymes, however, excise the adenine adduct more efficiently than the guanine adduct. These results suggest that the 3-methyladenine-DNA glycosylases from different origins have differential substrate specificity to release DZQ-DNA lesions. The use of 3-methyladenine-DNA glycosylase incision analysis could possibly be applied to quantify a variety of DNA adducts at the nucleotide level.  相似文献   

4.
The mechanisms of anticancer activity of 2,5-diaziridinyl-1,4-benzoquinone (DZQ) are believed to involve the alkylation of guanine and adenine bases. In this study, it has been investigated whether bacterial and mammalian 3-methyladenine-DNA glycosylases are able to excise DZQ-DNA adduct with a differential substrate specificity. DZQ-induced DNA adduct was first formed in the radiolabeled restriction enzyme DNA fragment, and excision of the DNA adduct was analyzed following treatment with homogeneous 3-methyladenine-DNA glycosylase from E. coli, rat, and human, respectively. Abasic sites generated by DNA glycosylases were cleaved by the associated lyase activity of the E. coli formami-dopyrimidine-DNA glycosylase. Resolution of cleaved DNA on a sequencing gel with Maxam-Gilbert sequencing reactions showed that DZQ-induced adenine and guanine adducts were very good substrates for bacterial and mammalian enzymes. The E. coli enzyme excises DZQ-induced adenine and guanine adducts with similar efficiency. The rat and human enzymes, however, excise the adenine adduct more efficiently than the guanine adduct. These results suggest that the 3-methyladenine-DNA glycosylases from different origins have differential substrate specificity to release DZQ-DNA lesions. The use of 3-methyladenine-DNA glycosylase incision analysis could possibly be applied to quantify a variety of DNA adducts at the nucleotide level.  相似文献   

5.
The purification from cultured human fibroblasts of a protein that binds specifically to partially depurinated DNA and inserts purines into those sites is described. The purine insertion, but not the binding, requires K+. The DNA binding can be saturated with increasing apurinic sites and is weakened by the presence of adenine or guanine. Base insertion into depurinated DNA is specific for adenine or guanine; none is observed with dATP or dGTP. When the depurinated DNA substrate is specifically cleaved with apurinic endonuclease, no purine insertion occurs. Guanine insertion does not occur into tRNA or depyrimidinated DNA, and thymine is not inserted into either depyrimidinated DNA or depurinated DNA. Purine insertion activity follows Michaelis-Menten kinetics with respect to purintes; the apparent Km values for both adenine and guanine are 5 microM. The enzyme binds the purine bases very tightly. Adenine binding saturates at less than 1 microM adenine, perhaps reflecting the low intracellular adenine concentration. The binding protein specific for UV-irradiated DNA (Feldberg, R.S., and Grossman, L. (1976) Biochemistry 15, 2402-2408) had no detectable purine or pyrimidine base insertion activity with depurinated or depyrimidinated DNAs.  相似文献   

6.
Reaction of cis-diamminedichloroplatinum (II) with single-stranded M13 phage DNA in vitro produced monofunctional platinum-DNA adducts on guanine and bifunctional lesions with either two guanine bases (GG) or one adenine and one guanine (AG). When DNA containing a majority of monofunctional platinum-DNA lesions was dialyzed against 10 mM NaCIO4 at 37 degrees C, conversion of monoadducts to bifunctional lesions was observed. We examined the effect of post-treatment formation of bifunctional lesions on DNA synthesis by Escherichia coli DNA polymerase I and highly purified eukaryotic DNA polymerase alpha from Drosophila melanogaster and calf thymus. Arrest sites on the platinated template were determined by polyacrylamide gel electrophoresis. Monofunctional lesions did not appear to block DNA synthesis. Inhibition of replication increased as bifunctional platinum-DNA lesions formed during post-treatment incubation; GG adducts inhibited replication more than AG. These results suggest that bifunctional GG platinum-DNA adducts may be the major toxic damage of cisplatin.  相似文献   

7.
The evidence for solid state physical processes in diverse biological systems is reviewed. Semiconduction of electrons across the enzyme particles as the rate-limiting process in cytochrome oxidase is evidenced by the peculiar kinetic patterns of this enzyme and by microwave Hall effect measurements. PN junction conduction of electrons is suggested by kinetics of photobiological free radicals in eye and photosynthesis. Superconduction at physiological temperatures may be involved in growth and nerve. Phonons and polarons seem likely to be involved in mitochondrial phosphorylation. Piezoelectricity and pyroelectricity may be involved in growth and nerve. Infrared electromagnetic waves may transmit energy in lipid bilayers of nerve and mitochondria. Complexed sodium and potassium ions in structured cell water may be analogous to valence band electrons in a semiconductor, and the free cations may be considered analogous to conduction band electrons. Ionic processes in cell water therefore resemble electronic conduction processes in solid semiconductors, which leads to kinetic predictions in agreement with experiment. The future of solid state biology depends on the development of new experimental methods able to measure solid state physical properties in biological materials which are non-crystalline, impure, particulate, and wet.  相似文献   

8.
肖奕 《生物物理学报》1986,2(4):319-322
我们用Dean负因子计数方法计算了氨基酸残基无序排列的蛋白质分子的电子能谱。结果表明当含有较多种氨基酸时,无序蛋白质分子的价带很宽,这样价带中的空穴就有很大的迁移率。  相似文献   

9.
A series of molecular orbital calculations, using MINDO/3 and CNDO/2L methods, have been used to characterize the chemical reaction of protonated aziridine with DNA nucleophilic base sites. The N-7 atom of guanine is found to be the preferred alkylation site only when the O-6 atom of guanine is involved in base-pair hydrogen bonding. Otherwise O-6 is the predicted major site of alkylation. This indirectly suggests that protonated aziridine alkylation processes involve base-paired DNA structures, since N-7 guanine is the observed major site of alkylation. Alkylation of N-3 adenine is predicted to be more favorable than chemical attack of the N-7 adenine position. Both of these sites, however, are predicted to be less reactive than N-7 of guanine. These chemical reactivity studies resolve alkylation specifically not achieved in the DNA–alkylator physical association calculations reported in the preceding paper.  相似文献   

10.
To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothia­diazole)] (C‐PCPDTBT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells via excitation of the low‐energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon‐analogue, poly[(4,4‐bis(2‐ethylhexyl)dithieno[3,2‐b:2,3d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (Si‐PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C‐PCPDTBT and Si‐PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si‐PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.  相似文献   

11.
O P Lamba  R Becka  G J Thomas 《Biopolymers》1990,29(10-11):1465-1477
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.  相似文献   

14.
Summary

Interactions of the antiretroviral hypericin molecule with polynucleotides, i.e. poly(dG-dC), poly(dA-dT), poly(rG) and poly(rC), have been studied in aqueous solutions by resonance Raman spectroscopy, using an UV excitation wavelength which induces a specific resonance enhancement of spectral band intensities corresponding to proper nucleic base modes of vibration. It is shown that : i) hypericin selectively interacts with the N7 sites of purines, ii) the strength of interaction depends on the polymer structure, and : iii) interaction with guanine is stronger than with adenine molecules.  相似文献   

15.
3-Nitrobenzanthrone (3-NBA) is a potent environmental mutagen and a potential human carcinogen present in diesel exhaust and airborne particulates. N-acetoxy-3-aminobenzanthrone (N-Aco-ABA) has been shown to be a major reactive metabolite of 3-NBA, which mainly produces adducts with guanine and adenine in cellular DNA. Here we analyzed mutations induced by N-Aco-ABA using supF shuttle vector plasmids to elucidate the mutagenic specificity of 3-NBA in human cells. Base sequence analysis of more than 100 plasmids with supF mutations induced in wildtype and DNA repair-deficient XP cells revealed that the major mutation was base substitutions of which the majority (42 and 38%, respectively) were G:C to T:A transversions. The next major mutation was G:C to A:T and A:T to G:C base substitutions in wildtype and XP cells, respectively. The DNA polymerase stop assay using N-Aco-ABA-treated plasmids as a template showed that most stop signals, i.e., adducted sites, appeared at G:C sites. These results suggest that N-Aco-ABA binds preferably to guanine rather than adenine, and adducted adenine is repaired more efficiently by the nucleotide excision repair. Error-prone DNA polymerases could insert adenine at sites opposite to N-Aco-ABA-adducted guanine, which leads to G:C to T:A transversion. These findings could be very important to evaluate the human lung cancer risk of environmental 3-NBA.  相似文献   

16.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

17.
We present data on the frequencies of nucleotides and nucleotide substitutions in conservative DNA regions involved in the regulation of gene expression. Data on prokaryotes and eukaryotes are considered separately. In both cases DNA strands complementary to those which serve as templates for RNA-polymerase have low frequencies of cytosine. The most conservative positions also have an increased frequency of adenine. Various substitutions in the series of homologous regulatory DNA sequences, as compared to their consensuses, have different frequencies. In prokaryotes guanine in a consensus sequence is substituted for at the lowest and adenine at the highest frequency, whereas in eukaryotes cytosine is substituted for at the lowest and guanine at the highest frequency. In both cases the nucleotides substituted for are most frequently replaced with cytosine. Deviations from consensus sequences tend to cluster in adjacent positions. The more pronounced the consequences of a nucleotide substitution are the higher is the frequency of substitutions in adjacent positions. Possible explanations for these phenomena are discussed.  相似文献   

18.
An examination of the effect of B- and P-doping and codoping on the electronic structure of anatase TiO2 by performing density functional theory calculations revealed the following: (i) B- or P-doping effects are similar to atomic undercoordination effects on local bond relaxation and core electron entrapment; (ii) the locally entrapped charge adds impurity levels within the band gap that could enhance the utilization of TiO2 to absorb visible light and prolong the carrier lifetime; (iii) the core electron entrapment polarizes nonbonding electrons in the upper edges of the valence and conduction bands, which reduces not only the work function but also the band gap; and (iv) work function reduction enhances the reactivity of the carriers and band gap reduction promotes visible-light absorption. These observations may shed light on effective catalyst design and synthesis.  相似文献   

19.
The DNA-Actinomycin D interaction has been studied by resonance Raman effect using DNA as chromophore. First, the resonance Raman spectra of DNA obtained with a U.V. excitation at wavelengths of 300 nm and 280 nm are presented. The main Raman hands are assigned to the convenient nucleic bases by comparison with the spectra of mononucleotides obtained under the same experimental conditions. In particular, with a 300 nm excitation, the 1582 cm-1 line is provided by adenine, while the 1492 cm-1 one is almost exclusively due to guanine. Then, the DNA-Actinomycin D complex has been studied: the line enhancements and the specificity of the resonance permits the displaying of the DNA spectrum free of any contribution of Actinomycin. The interaction provides a large intensity decrease of the 1492 cm-1 guanine line: this is a direct consequence of the orbital overlapping of the guanine 2-aminogroup with the ring nitrogen of Actinomycin in the DNA-Actinomycin pi complex.  相似文献   

20.
Imidazole ring opened adenine and guanine residues similar to those generated by gamma-irradiation of nucleosides of DNA, were chemically synthesised. Reaction conditions that promote the chemical reclosure of opened imidazole rings of guanine have been identified. The optimal conditions for the reclosure of such rings was found to be 0.2 M HCl at 37 degrees C. These conditions did not promote a reclosure of opened imidazole rings of adenine. The reclosure of opened imidazole rings of guanine was found to follow first order kinetics. The very low pH for this chemical ring reclosure precludes the likelihood that this reaction occurs intracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号