首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A microsomal fraction from the cells of the malaria parasite of rodent Plasmodium berghei was obtained. The spectral properties of microsomal preparations suggest that P. berghei microsomes contain cytochromes b5 and P-420. Electrophoretic separation of microsomal proteins revealed the presence of proteins whose molecular mass corresponds to NADPH-cytochrome c reductase, cytochrome P-450 and epoxide hydratase. The activities of NADPH-cytochrome c reductase and benzpyrene hydroxylase were determined. The spectral parameters, electrophoretic data and enzymatic activities of microsomal proteins indicate that P. berghei cells contain a cytochrome P-450 monooxygenase system. The interrelationship between the activity of the microsomal monooxygenase system and the resistance of P. berghei cells to the antimalaria preparation chloroquine is discussed.  相似文献   

3.
4.
5.
6.
Dihydroorotate dehydrogenase (DHODase) has been purified 400-fold from the rodent malaria parasite Plasmodium berghei to apparent homogeneity by Triton X-100 solubilization followed by anion-exchange, Cibacron Blue F3GA-agarose affinity, and gel filtration chromatography. The purified enzyme has a molecular mass of 52 +/- 2 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and of 55 +/- 6 kDa by gel filtration chromatography, and it has a pI of 8.2. It is active in monomeric form, contains 2.022 mol of iron and 1.602 acid-labile sulfurs per mole of enzyme, and does not contain a flavin cofactor. The purified DHODase exhibits optimal activity at pH 8.0 in the presence of the ubiquinone coenzyme CoQ6, CoQ7, CoQ9, or CoQ10. The Km values for L-DHO and CoQ6 are 7.9 +/- 2.5 microM and 21.6 +/- 5.5 microM, respectively. The kcat values for both substrates are 11.44 min-1 and 11.70 min-1, respectively. The reaction product orotate and an orotate analogue, 5-fluoroorotate, are competitive inhibitors of the enzyme-catalyzed reaction with Ki values of 30.5 microM and 34.9 microM, respectively. The requirement of the long-chain ubiquinones for activity supports the hypothesis of the linkage of pyrimidine biosynthesis to the electron transport system and oxygen utilization in malaria by DHODase via ubiquinones [Gutteridge, W. E., Dave, D., & Richards, W. H. G. (1979) Biochim. Biophys. Acta 582, 390-401].  相似文献   

7.
The pathological changes associated with malarial infection in pregnancy were studied in rats and mice infected with Plasmodium berghei at different stages of gestation. Histopathological and ultrastructural studies of infected placentae near term in both species revealed disruption of architecture with gross thickening and necrosis of cells in the labyrinthine zone and fibrosis of the trilaminar trophoblast separating the maternal and fetal circulations. In the mouse, the extent of histopathological alterations in infected placentae ranged from the presence of immature erythrocytes in the fetal circulation in low grade maternal infection, to the marked deposition of fibrinoid material on the trilaminar trophoblast and inflammatory masses in severely infected placentae. In the rat, histopathological aberrations in the placentae were marked by placental stroma edema, fibrosis, and cellular infiltration. Immunohistological studies of cryostat sections of placentae from infected animals showed more parasites and pigment in infected mouse placentae than in the corresponding rat organ, but in both species parasites and pigment were largely confined to the maternal blood spaces and were only occasionally found in necrotic areas of trophoblast. No clear differences were observed between infected and control placentae in terms of the amount of IgG, IgM, or IgA which were each present in various amounts. These observations and the rarity of congenital malaria in the animals indicate that the placenta constitutes a major barrier to infection of the fetus. However, the pathological aberrations in the infected placentae may impose a biochemical stress upon the fetus which may account for the low birthweight, the increased frequency of abortion, and the greatly increased maternal and fetal death rates observed in malaria.  相似文献   

8.
9.
In order to determine the effect of Fansidar on plasmodial infection in mice, outbred, adult, Swiss-Webster mice were treated with Fansidar (20 mg sulfadoxine and 1 mg pyrimethamine/kg body weight) at various intervals before and/or after inoculation with blood stages of Plasmodium berghei. Drug therapy resulted in cure if it was given before the parasitemia rose to 53%. Oral administration of Fansidar was more effective in reducing or preventing parasitemia than intramuscular injection. Fatal infections were prevented if mice were treated orally with one dose of Fansidar 2 days before inoculation with P. berghei, whereas only partial protection occurred in animals treated 4 or more days before inoculation. Fansidar administered on two consecutive days provided protection if the drug was given at 3 and 2 days before inoculation. Administration of Fansidar for three consecutive days protected all animals if given on days 8 to 6 before inoculation. After oral administration of Fansidar, the parasitemia dropped dramatically and was undetectable at 60 hr. At 12 hr after oral treatment, schizonts and trophozoites were numerous, but there were few merozoites. Schizonts were the predominant stage at 24 hr, whereas merozoites predominated at 36 hr. Swiss-Webster and C57BL/6 mice became immune to a lethal dose of P. berghei after 4 cycles of inoculation and drug cure. Protective immunity was still present at 472 days after the fifth parasite inoculation.  相似文献   

10.
It is generally accepted that the mitochondria play central roles in energy production of most eukaryotes. In contrast, it has been thought that Plasmodium spp., the causative agent of malaria, rely mainly on cytosolic glycolysis but not mitochondrial oxidative phosphorylation for energy production during blood stages. However, Plasmodium spp. possesses all genes necessary for the tricarboxylic acid (TCA) cycle and most of the genes for electron transport chain (ETC) enzymes. Therefore, it remains elusive whether oxidative phosphorylation is essential for the parasite survival. To elucidate the role of TCA metabolism and ETC in malaria parasites, we deleted the gene for flavoprotein (Fp) subunit, Pbsdha, one of four components of complex II, a catalytic subunit for succinate dehydrogenase activity. The Pbsdha(-) parasite grew normally at blood stages in mouse. In contrast, ookinete formation of Pbsdha(-) parasites in the mosquito stage was severely impaired. Finally, Pbsdha(-) ookinetes failed in oocyst formation, leading to complete malaria transmission blockade. These results suggest that malaria parasite may switch the energy metabolism from glycolysis to oxidative phosphorylation to adapt to the insect vector where glucose is not readily available for ATP production.  相似文献   

11.
Wolbachia, a common bacterial endosymbiont of insects, has been shown to protect its hosts against a wide range of pathogens. However, not all strains exert a protective effect on their host. Here we assess the effects of two divergent Wolbachia strains, wAlbB from Aedes albopictus and wMelPop from Drosophila melanogaster, on the vector competence of Anopheles gambiae challenged with Plasmodium berghei. We show that the wAlbB strain significantly increases P. berghei oocyst levels in the mosquito midgut while wMelPop modestly suppresses oocyst levels. The wAlbB strain is avirulent to mosquitoes while wMelPop is moderately virulent to mosquitoes pre-blood meal and highly virulent after mosquitoes have fed on mice. These various effects on P. berghei levels suggest that Wolbachia strains differ in their interactions with the host and/or pathogen, and these differences could be used to dissect the molecular mechanisms that cause interference of pathogen development in mosquitoes.  相似文献   

12.
This protocol describes a method of genetic transformation for the rodent malaria parasite Plasmodium berghei with a high transfection efficiency of 10(-3)-10(-4). It provides methods for: (i) in vitro cultivation and purification of the schizont stage;(ii) transfection of DNA constructs containing drug-selectable markers into schizonts using the nonviral Nucleofector technology; and (iii) injection of transfected parasites into mice and subsequent selection of mutants by drug treatment in vivo. Drug selection is described for two (antimalarial) drugs, pyrimethamine and WR92210. The drug-selectable markers currently in use are the pyrimethamine-resistant dihydrofolate reductase (dhfr) gene of Plasmodium or Toxoplasma gondii and the DHFR gene of humans that confer resistance to pyrimethamine and WR92210, respectively. This protocol enables the generation of transformed parasites within 10-15 d. Genetic modification of P. berghei is widely used to investigate gene function in Plasmodium, and this protocol for high-efficiency transformation will enable the application of large-scale functional genomics approaches.  相似文献   

13.
The effect of mouse anti-mosquito antibodies, present in the bloodmeal, on the infectivity of Plasmodium berghei Vincke to Anopheles farauti Laveran was investigated. Significantly fewer oocysts developed in mosquitoes feeding on mice immunized with sugar-fed mosquito midgut antigens than in mosquitoes feeding on control mice. Mosquitoes feeding on mice immunized with the midgut antigens derived from sugar-fed mosquitoes also showed reduced mortality and had lower infection rates than those fed on unimmunized mice. Blood-fed midgut antigen was less effective in producing these effects than sugar-fed midgut antigen.  相似文献   

14.
15.
The gene encoding an aspartic proteinase precursor (proplasmepsin) from the rodent malaria parasite Plasmodium berghei has been cloned. Recombinant P. berghei plasmepsin hydrolysed a synthetic peptide substrate and this cleavage was prevented by the general aspartic proteinase inhibitor, isovaleryl pepstatin and by Ro40-4388, a lead compound for the inhibition of plasmepsins from the human malaria parasite Plasmodium falciparum. Southern blotting detected only one proplasmepsin gene in P. berghei. Two plasmepsins have previously been reported in P. falciparum. Here, we describe two further proplasmepsin genes from this species. The suitability of P. berghei as a model for the in vivo evaluation of plasmepsin inhibitors is discussed.  相似文献   

16.
17.
Rosetting is a property of many malaria parasite species that has been linked to virulence in the major species infecting humans, Plasmodium falciparum. Here, the basic properties of rosettes in the rodent malaria laboratory model, P. chabaudi, were studied with a view to future studies on the role of rosetting in malaria parasite virulence and transmission. Rosetting occurred in 14 out of the 15 P. chabaudi clones studied, varied consistently between clones, and ranged between 9 and 37% at full parasite maturity. Rosetting frequency markedly declined after the mouse reached peak parasitemia, possibly due to host immunity. Consistent with P. falciparum and P. vivax, rosettes in P. chabaudi were disrupted by treatment with trypsin and EDTA. However, P. chabaudi rosettes were insensitive to sulfated glycoconjugates (heparin, heparan sulfate and fucoidan). The molecular basis of rosetting in P. chabaudi is unknown at present, but the results suggest that the molecules involved may differ from those in human-infecting species.  相似文献   

18.
This protocol describes a methodology for the genetic transformation of the rodent malaria parasite Plasmodium berghei and the subsequent selection of transformed parasites expressing green fluorescent protein (GFP) by flow-sorting. It provides methods for: transfection of the schizont stage with DNA constructs that contain gfp as the selectable marker; selection of fluorescent mutants by flow-sorting; and injection of flow-sorted, GFP-expressing parasites into mice and the subsequent collection of transformed parasites. The use of two different promoters for the expression of GFP is described; these two promoters require slightly different procedures for the selection of mutants. The protocol enables the collection of transformed parasites within 10-12 days after transfection. The genetic modification of P. berghei is widely used to investigate gene function in Plasmodium sp. The application of flow-sorting to the selection of transformed parasites increases the possibilities of parasite mutagenesis, by effectively expanding the range of selectable markers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号