首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies by us [Biochemistry (1977) 16, 2570-2579] have shown that L-methioninol, a methionine analog lacking the carboxylate negative charge, enhances the affinity of AMP for methionyl-tRNA synthetase while L-methionine antagonizes the nucleotide binding. Such couplings between ligands of the enzyme have now been applied to affinity chromatography of methionyl-tRNA synthetase on an agarose-hexyl-adenosine-5'-phosphate gel (the spacer is attached to AMP at the adenine C-8 position). Retention of the enzyme on this gel column was shown to be dependent on the presence of appropriate concentrations of magnesium and of L-methioninol in the equilibration buffer. The enzyme was then specifically recovered from the column by omitting the amino alcohol or by adding an excess of L-methionine which antagonizes the cooperative effect of L-methioninol. This approach has provided the basis for a new purification procedure of methionyl-tRNA synthetase which leads to a 200-fold purification in a single chromatographic step. In this manner, after 30-50% ammonium sulfate fractionation of extracts of Escherichia coli EM 20031 (carrying the F32 episome), 0.25 mg X methionyl-tRNA synthetase was obtained at 90% purity per ml of agarose-hexyl-adenosine-5'-phosphate gel.  相似文献   

2.
2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces kl?ckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions.  相似文献   

3.
1. Inducible L-histidine--2-oxoglutarate aminotransferase was purified some 170-fold from extracts of Pseudomonas testosteroni. 2. The preparation showed only one major component after electrophoresis on polyacrylamide gels, though additional minor bands were observed when samples concentrated on a DEAE-cellulose column were used. 3. The molecular weight of the enzyme was found to be approx. 70000 by chromatography on Sephadex G-200. 4. The purification scheme produced enzyme that was inactive in the absence of pyridoxal 5'-phosphate. 5. The equilibrium constant for the reaction L-histidine+2-oxoglutarate equilibrium imidazolylpyruvate+L-glutamate was 0.49. 6. The reaction mechanism was Ping Pong. 7. The enzyme was shown to have only low activity towards aromatic amino acids and was highly specific for 2-oxoglutarate.  相似文献   

4.
The crystal structure of the complex formed between recombinant yeast orotidine 5'-phosphate decarboxylase and the competitive inhibitor 6-hydroxyuridine 5'-phosphate reveals the presence of four hydrogen bonds between active site residues Tyr-217 and Arg-235 and the phosphoryl group of this inhibitor. When Tyr-217 and Arg-235 are individually mutated to alanine, values of k(cat)/K(m) are reduced by factors of 3000- and 7300-fold, respectively. In the Y217A/R235A double mutant, activity is reduced more than 10(7)-fold. Experiments with highly enriched [(14)C]orotic acid show that when ribose 5'-phosphate is deleted from substrate orotidine 5'-phosphate, k(cat)/K(m) is reduced by more than 12 orders of magnitude, from 6.3 x 10(7) M(-1) s(-1) for OMP to less than 2.5 x 10(-5) M(-1) s(-1) for orotic acid. Activity toward orotate is not "rescued" by 1 M inorganic phosphate. The K(i) value of ribose 5'-phosphate, representing the part of the natural substrate that is absent in orotic acid, is 8.1 x 10(-5) M. Thus, the effective concentration of the 5'-phosphoribosyl group, in stabilizing the transition state for enzymatic decarboxylation of OMP, is estimated to be >2 x 10(8) M, representing one of the largest connectivity effects that has been reported for an enzyme reaction.  相似文献   

5.
We have previously shown that HeLa cells contain activities implicated in tRNA splicing in yeast, a ligase capable of joining tRNA half-molecules and an NAD-dependent activity capable of removing the 2'-phosphate created at the splice junction by the ligase (Zillmann, M., Gorovsky, M.A., and Phizicky, E.M. (1991) Mol. Cell. Biol. 11, 5410-5416). We show here that removal of the splice junction 2'-phosphate is, as in yeast, a 2'-phosphate-specific phosphotransfer reaction that produces the same, as yet unidentified, small molecule. This enzyme is highly specific for oligomeric substrates having internal 2'-phosphates. Oligomers bearing terminal 2'-phosphates are at least 50-fold less reactive and those bearing 5'- or 3'-terminal phosphates are at least 600-fold less reactive. The requirement for an internal 2'-phosphate can be satisfied by a substrate as small as a dimer.  相似文献   

6.
Pyridoxaminephosphate oxidase (EC 1.4.3.5, deaminating) that was partially purified about 40-fold from dry baker's yeast was immobilized to iodo- and bromoacetyl polysaccharides. The most effective carrier was an iodoacetyl cellulose, to which almost complete activity of pyridoxine 5'-phosphate oxidase was immobilized in 0.02M potassium phosphate buffer (pH 8.5) containing 2M ammonium sulfate at 4 degrees C. The immobilized enzyme was more stable than the purified, soluble enzyme against heat and pH change. It was confirmed that N-(5'-phosphopyridoxyl)-L-serine was degradedly oxidized to pyridoxal 5'-phosphate and L-serine by the immobilized enzyme as comparable rate as pyridoxine 5'-phosphate, whereas N-(5'-phosphopyridoxyl)-D-serine did not serve as substrate, as in the purified, soluble enzyme.  相似文献   

7.
This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.  相似文献   

8.
A new low-molecular-weight bound sulphite was found in yeast enzyme reaction systems which convert the sulphur of 35S-labelled adenosine 3'-phosphate 5'-sulphatophosphate into exchangeable radioactive sulphite. This bound sulphite was separated from other components by paper electrophoresis and Sephadex G-25 chromatography, and shown to be a peptide with multiple thiol groups and an estimated mol.wt. of 1400. The labelled sulphur in this peptide is highly exchangeable with unlabelled sulphite, but exchangeability decreases with time and freeze-drying. The low-molecular-weight acceptor is tightly bound to enzyme B of the yeast system and, apparently, accepts the sulpho group of adenosine 3'-phosphate 5'-sulphatophosphate and is released as bound sulphite only in the presence of enzymically or chemically reduced fraction C. It is proposed that the low-molecular-weight acceptor is a carrier peptide which, after release of the reduced sulphur, becomes re-oxidized and returns to enzyme B. Fraction C appears to function as an obligatory reductant of the oxidized acceptor before it can accept another-SO-3-moiety from adenosine 3'-phosphate 5'-sulphatophosphate. These findings are consistent with mechanisms proposed for sulphate reduction in spinach and Chlorella, and suggest that fraction C is the natural thiol required in these systems. An improved column technique for the preparation of adenosine 3'-phosphate 5'-sulphatophosphate is described.  相似文献   

9.
S Ikeda  I Park  P Gardner  D H Ives 《Biochemistry》1984,23(9):1914-1921
3'-(4-Aminophenyl phosphate) derivatives of deoxycytidine (dCyd), deoxyadenosine (dAdo), and deoxyguanosine ( dGuo ) were synthesized. The inhibitory effects of these compounds on mammalian and bacterial deoxynucleoside kinases and several other deoxynucleoside-metabolizing enzymes were examined. The same derivatives were coupled to carboxyl-terminal Sepharose CL-6B (3-8 mumol of ligand/mL of gel), and each of the resulting affinity adsorbents was tested with various partially purified enzymes. Reasonable correlation between the inhibitory effect of a soluble deoxynucleoside 3'-phosphate diester and affinity of the corresponding Sepharose adsorbent for the enzyme was observed. Among the three dCyd kinases examined, only the bovine mitochondrial enzyme was adsorbed onto the dCyd-Sepharose column and eluted biospecifically by 1 mM dCyd (1400-fold purification). Its Ki toward the dCyd derivative was relatively low (1.1 mM), whereas no measurable inhibition was seen with mammalian cytosol or bacterial enzymes that did not stick to the column. The Ki of the dAdo derivative toward three dAdo kinases was more than 5 mM in each case, and none of these were retained by dAdo-Sepharose. Among the other dAdo-metabolizing enzymes examined, nucleoside phosphotransferase from barley (Ki = 1.2 mM) was adsorbed to dAdo-Sepharose at pH 5.0 and was biospecifically eluted with dAdo or AMP after suppressing ionic binding by adjusting the pH to 6.0 (480-fold purification to homogeneity). Mammalian mitochondrial dGuo kinase (beef liver) showed the lowest Ki (0.16 mM) among the enzymes tested and was biospecifically purified with dGuo -Sepharose (2800-fold purification).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A highly active and soluble glucose-6-phosphatase has been purified to near homogeneity from rat liver. Successful purification has been initiated by covalent labeling of the enzyme in native rat liver microsomes with pyridoxal 5'-phosphate and NaBH4, followed by solubilization of the microsomes with Triton X-100, chromatography on phenyl-Sepharose, hydroxyapatite, DEAE-Sephacel and a second chromatography step on hydroxyapatite. The final enzyme preparation obtained was approximately 700-fold purified over the activity of starting microsomes. As judged by SDS/PAGE the purified glucose-6-phosphatase is composed of a single protein with a molecular mass of 35 kDa. The present work demonstrates that the purified glucose-6-phosphatase must be arranged in the native microsomal membrane so that it is accessible to pyridoxal 5'-phosphate from the cytoplasmic side.  相似文献   

11.
Farnesyl pyrophosphate synthetase (EC 2.5.1.1) from chicken liver, pig liver, and yeast has been purified to homogeneity in a single chromatographic step by affinity chromatography. The affinity ligand, geranylmethylphosphonophosphate, is linked to Affi-Gel 10 through the phosphonophosphate moiety. The affinity gel is stable chemically and the internal phosphonophosphate linkage is not hydrolyzed by nonspecific phosphatases. A single column has been used repeatedly for over a year with no degradation in its performance. A typical purification only requires 2 days and gives a 500- to 600-fold purification of enzyme from a crude ammonium sulfate precipitate.  相似文献   

12.
L-Glutamate decarboxylase, an enzyme under the control of the asexual developmental cycle of Neurospora crassa, was purified to homogeneity from conidia. The purification procedure included ammonium sulfate fractionation and DEAE-Sephadex and cellulose phosphate column chromatography. The final preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gels with a molecular weight of 33,200 +/- 200. A single band coincident with enzyme activity was found on native 7.5% polyacrylamide gels. The molecular weight of glutamate decarboxylase was 30,500 as determined by gel permeation column chromatography at pH 6.0. The enzyme had an acidic pH optimum and showed hyperbolic kinetics at pH 5.5 with a Km for glutamic acid of 2.2 mM and a Km for pyridoxal-5'-phosphate of 0.04 microM.  相似文献   

13.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

14.
Using blue Sepharose affinity chromatography, we purified orotidine-5'-phosphate decarboxylase over 600-fold, to near homogeneity, from strains of Escherichia coli harboring the cloned pyrF gene on the multicopy plasmid pDK26. The purified enzyme has a subunit molecular weight of 27,000 but appears to be catalytically active as a dimer. In contrast to yeast enzymes, orotidine-5'-phosphate decarboxylase from E. coli is unstable at pH 6.0. The specific activity and Km values were 220 U/mg and 6 microM, respectively.  相似文献   

15.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

16.
17.
S-adenosylmethionine decarboxylase from baker''s yeast.   总被引:7,自引:2,他引:5       下载免费PDF全文
1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate.  相似文献   

18.
Galactosylceramide sulfotransferase (EC 2.8.2.11) catalyzes the biosynthesis of sulfatide from galactocerebroside and adenosine 3'-phosphate 5'-phosphosulfate (PAPS). This enzyme is developmentally controlled, reaching a maximum activity in the brains of mice corresponding to that of maximum myelination. The product, sulfatide, is an important component of myelin. This transferase from mouse brain has been purified 2600-fold using a combination of pyridoxal 5'-phosphate- and ATP-ligated columns. The purified enzyme yielded a single band following SDS-polyacrylamide gel electrophoresis with an apparent M(r) of 31,000. The entire purification procedure can be completed in 1 day. The pH optimum for the enzyme is 7.0. The Km for PAPS is 1.2 x 10(-6) M, and the Km for cerebroside is 2.6 x 10(-5) M. Cerebroside concentrations > 80 pmol/ml are inhibitory. Enzyme preparations were associated with several lipids. Vitamin K+P(i) activated purified preparations of the sulfotransferase and maintained enzyme activity during storage at -80 degrees C.  相似文献   

19.
Hydroxymethylpyrimidine kinase, which catalyzes the conversion of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) to its monophosphate, is purified about 3300-fold to apparent homogeneity from the cell-free extracts of E. coli K-12 through four successive steps of column chromatographies. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis and its molecular weight is estimated to be 43 000-44 000. The enzyme phosphorylated each of the pyridoxine substrates, pyridoxine, pyridoxal and pyridoxamine as well as hydroxymethylpyrimidine, and the reaction gave rise to a corresponding 5'-phosphate compound. The Km values of the purified enzyme for hydroxymethylpyrimidine and for pyridoxine are 1.1.10(-4) and 6.6.10(-5) M, respectively. Pyridoxine inhibits competitively the phosphorylation of hydroxymethylpyrimidine with a Ki value of 2.7.10(-6) M and hydroxymethylpyrimidine shows the same for that of pyridoxine with a Ki value of 9.0.10(-5) M. A similarity in enzymic properties between the hydroxymethylpyrimidine kinase and an enzyme which has been characterized as pyridoxal kinase leads to the assumption that both hydroxymethylpyrimidine and pyridoxine might be phosphorylated by the same enzyme species.  相似文献   

20.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号