首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The established radiation quality parameters in mixed neutron-gamma radiation fields may be measured by applying the initial (columnar) recombination of ions in tissue-equivalent (TE) high-pressure ionization chambers (recombination chambers). The mean quality factor can be determined to within 10-15% for mixed fields with neutrons ranging from thermal to 10 MeV, and the dose mean LET of the proton component can be determined to within 10-15% if the gamma-ray absorbed dose fraction is known. These average parameters are derived by measuring the ratio of the ionization currents collected at two high-field strengths and constant gas pressure applied to the ionization chamber. By utilizing approximate correlations between physical parameters in the neutron energy region from thermal to 10 MeV, the dose mean LET of the heavy ion component, the overall dose mean LET, and the microdosimetric parameter y0,D of the mixed field can also be derived. Experimental verification of the method is presented for various neutron-gamma radiation spectra in air and in water by comparison to theoretical calculations and results from low-pressure proportional counter measurements. Good agreement is shown. The TE high-pressure ionization chamber appears to have wide potential for use as a dose-equivalent meter in radiation protection or as a beam characterization device in radiobiology.  相似文献   

2.
3.
Two very different techniques for measuring the energy of neutrons in the energy range 0.1-10 MeV are presented and compared. A recoil-proton spectrometer is used to determine the energy spectra of neutrons produced by the d(4)-Be and p(4)-Be reactions down to the low-energy threshold of 0.7 MeV. The same radiation fields are also measured with a recently developed method using a high-pressure ionization chamber that can be used to determine the mean energy of the neutrons in a mixed neutron-gamma radiation field provided the gamma-ray absorbed dose fraction is determined independently. An intercomparison of the two methods shows that the high-pressure ionization chamber compares well and supplements the established recoil-proton spectrometer technique. The almost isotropic response of the chamber has enabled measurements to be made of the variation of mean neutron energy with depth in water for the two radiation fields.  相似文献   

4.
PurposeIt is important to check stability of ionization chambers in between regular calibration cycles. Stability checks can include individual 60Co irradiations, use of a beta-emitting check source, or redundant measurements in megavoltage photon beams. While 60Co irradiators are considered stable, they are rarely found in the clinical setting. Thus, this study seeks to compare the precision and efficiency in monitoring chamber stability using 90Sr check sources and linear accelerator beams which are both commonly found in the clinical setting, and compare these sources to 60Co.MethodsMeasurements were made with a 90Sr beta-emitting check source and a 6 MV photon beam using a Constancy Check Phantom with three custom inserts to hold the ionization chambers. A comparison of both methods was performed with an Exradin A28 scanning chamber, Wellhofer IC69 Farmer-type chamber, and Exradin A12 Farmer-type chamber. Chamber stability was evaluated with individual charge readings and charge ratios among the three chambers. Results were compared to measurements taken in 60Co with three Farmer-type chambers: the NEL 2571, PTW N30001G, and Exradin A12.ResultsStability of individual charge reading was found to be within ±1.0% for 90Sr source measurements and ±0.5% for external beam measurements, including the 60Co comparison. Additionally, the standard deviation of the mean charge ratios ranged from 0.15% to 0.40% for 90Sr measurements and from 0.10% to 0.30% for the external beam measurements.ConclusionsThis work provides a comparison of techniques used to assess stability of ionization chambers in order to better inform the clinical physicist.  相似文献   

5.
This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments.  相似文献   

6.
External electron radiotherapy is performed using a cone or applicator to collimate the beam. However, because of a trade-off between collimation and scattering/bremsstrahlung X-ray production, applicators generate a small amount of secondary radiation (leakage). We investigate the peripheral dose outside the radiation field of a Varian-type applicator. The dose and fluence outside the radiation field were analyzed in a detailed Monte Carlo simulation. The differences between the calculation results and data measured in a water phantom in an ionization chamber were less than ±1% in regions more than 3 mm below the surface of the phantom and at the depth of dose maximum. The calculated fluence was analyzed inside and outside the radiation field on a plane just above the water phantom surface. Changing the electron energy affected the off-axis fluence distribution outside the radiation field; however, the size of the applicator had little effect on this distribution. For each energy, the distributions outside the radiation field were similar to the dose distribution at shallow depths in the water phantom. The effect of secondary electrons generation by photon transmission through the alloy making up the lowest scraper was largest in the region from the field edge to directly below the cutout and at higher beam energies. The results of the Monte Carlo simulation confirm that the peripheral dose outside the field is significantly affected by radiation scattered or transmitted from the applicator, and the effect increases with the electron energy.  相似文献   

7.
MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc. Monte Carlo simulations were carried out with the magnetic field in three orientations: the magnetic field aligned perpendicular to the chamber and beam axis (transverse orientation), the magnetic field parallel to the chamber as well as parallel to the beam axis. Monte Carlo simulation results were validated with measurements using an electromagnet with magnetic field strength upto 1.1 T with the chambers in transverse orientation. The measurements and simulation results were in good agreement, except for the A26MR ionization chamber in transverse orientation. The maximum increase in response of the ionization chambers observed was 8.6% for the transverse orientation. No appreciable change in chamber response due to the magnetic field was observed for the magnetic field parallel to the ionization chamber and parallel to the photon beam.Polarity and recombination correction factor were experimentally investigated in the transverse orientation. The polarity effect and recombination effect were not altered by a magnetic field.This study further investigates the response of the ionization chambers as a function of the chambers’ rotation around their longitudinal axis. A variation in response was observed when the chamber was not rotationally symmetric, which was independent of the magnetic field.  相似文献   

8.
BackgroundIn radiation therapy, the peripheral dose (PD) – the dose outside the geometric boundaries of the radiation field – is of clinical importance. A metal oxide semiconductor field effect transistor (MOSFET) detector is used to estimate the peripheral dose.AimThe aim of this study is to investigate the ability of a MOSFET dosimetry system to accurately measure doses in peripheral regions of high energy X-ray beams.Materials & MethodsThe accuracy of the MOSFET system is evaluated by comparing peripheral region dose measurement with the results of standard ionization chamber measurements. Furthermore, the measurement of PD using a MOSFET detector helps us to keep the tolerance dose of any critical organ closer to the treatment field within the acceptable limits. The measurements were carried out using a 0.6 cc Farmer type ionization chamber and MOSFET 20 dosimetry system for field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 at three depths of 1.5 cm, 5 cm and 10 cm in a blue water phantom. PD were measured at distances varying from 1 cm to 30 cm from the field edges along the x axis for the open fields, with collimator rotation and with beam modifiers like 15 degree, 30 degree and 45 degree wedges.ResultsThe results show a good agreement of measured dose by both methods for various field sizes, collimator rotation and wedges.ConclusionThe MOSFET detector has a compact construction, provides instant readout, is of minimal weight and can be used on any surface.  相似文献   

9.
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs.  相似文献   

10.
Considerable interest has been aroused in recent years by reports that the transforming and carcinogenic effectiveness of low doses of high LET radiations can be increased by reducing the dose rate, especially for transformation of 10T1/2 cells in vitro by fission-spectrum neutrons. We report on conditions which have been established for irradiation of 10T1/2 cells with high LET monoenergetic alpha-particles (energy of 3.2 MeV, LET of 124 keV microns-1) from 238Pu. The alpha-particle irradiator allows convenient irradiation of multiple dishes of cells at selectable high or low dose rates and temperatures. The survival curves of irradiated cells showed that the mean lethal dose of alpha-particles was 0.6 Gy and corresponded to an RBE, at high dose rates, of 7.9 at 80 per cent survival and 4.6 at 5 per cent survival, relative to 60Co gamma-rays. The mean areas of the 10T1/2 nuclei, perpendicular to the incident alpha-particles, was measured as 201 microns2, from which it follows that, on average, only one in six of the alpha-particle traversals through a cell nucleus is lethal. Under the well-characterized conditions of these experiments the event frequency of alpha-particle traversals through cell nuclei is 9.8 Gy-1.  相似文献   

11.
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62 MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62 MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.  相似文献   

12.
Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift Peff is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of Peff can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R50 between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, dmax, the depth of 80% dose, d80, and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.  相似文献   

13.
The radioprotector 2-[aminopropyl)amino] ethanethiol (WR1065), which has been reported to reduce the cytotoxic and mutagenic effects of low LET radiation, was investigated for its ability to protect against low LET (60Co gamma ray) and high LET (fission-spectrum neutron)-induced chromosome damage in V79 cells. Cells were irradiated in G2 phase in the presence or absence of 4 mM WR1065 and were harvested and analyzed 2 h later for chromatid-type aberrations. Irradiation of G2-phase V79 cells in the presence of WR1065 resulted in a 30 to 50% reduction in the frequency of gamma-ray and neutron-induced chromatid-type breaks and exchanges. The effects were found only after exposures of greater than 200 cGy gamma-ray or 50 cGy neutron irradiation. The radioprotector was effective at reducing neutron-induced aberrations after exposures at dose rates of both 10 and 43 cGy/min. Thus the radioprotector WR1065 is an effective anti-clastogenic agent in V79 cells, protecting against both 60Co gamma-ray and fission-spectrum neutron-induced aberrations, when present during irradiation.  相似文献   

14.
This investigation is to study red marrow dose measurement for the 60Co gamma-ray treatment of nasopharyngeal carcinoma with the aid of Rando phantom. The energy of scattered radiation in space and in tissue was investigated by means of half-value layers with thermoluminescent dosimeters. Other related factors such as field size, SSD, and orientation of primary beams were also investigated. In the non-metastases cases, the red marrow dose is 26 +/- 6 rads which is about 0.40% tumor dose excluding the marrow at the NPC site. For the metastases cases, the red marrow dose is still about 0.40% tumor dose. If the red marrow at the NPC site is included, the red marrow dose is about 14.5% tumor dose for both non-metastases and metastases cases.  相似文献   

15.
Linear energy transfer (LET infinity) spectra of identified charge fragments and primaries, produced by nuclear interactions of 670 MeV/A neon in water, were measured along the unmodulated Bragg curve of the neon beam. The relative biological effectiveness (RBE) values for spermatogonial cell killing, as reported on the basis of weight loss assay of mouse testes irradiated with beams of approximately constant single LET infinity, were summed over the particle LET infinity spectra to obtain an effective RBE for each charged-particle species, as a function of water absorber thickness. The resultant values of effective RBE were combined to obtain an effective RBE for the mixed radiation field. The RBE calculated in this way was compared with experimental RBEs obtained for spermatogonial cell killing in the mixed radiation field produced by neon ions traversing a thick water absorber. Discrepancies of 10-40% were observed between the calculated RBE and the RBE measured in the mixed radiation field. Part of this discrepancy can be attributed to undetected low-Z fragments, whose contribution is not included in the calculation, leading to an overestimated value for the calculated RBE. On the other hand, calculated values 10% greater than the measured RBE are explained as track structure effects due to the higher radial ionization density near neon tracks relative to the ionization density near the silicon tracks used to fit the RBE vs LET infinity data.  相似文献   

16.
PurposeThis work compares Monte Carlo dose calculations performed using the RayStation treatment planning system against data measured on a Varian Truebeam linear accelerator with 6 MV and 10 MV FFF photon beams.MethodsThe dosimetric performance of the RayStation Monte Carlo calculations was evaluated in a variety of irradiation geometries employing homogeneous and heterogeneous phantoms. Profile and depth dose comparisons against measurement were carried out in relative mode using the gamma index as a quantitative measure of similarity within the central high dose regions.ResultsThe results demonstrate that the treatment planning system dose calculation engine agrees with measurement to within 2%/1 mm for more than 95% of the data points in the high dose regions for all test cases. A systematic underestimation was observed at the tail of the profile penumbra and out of field, with mean differences generally <0.5 mm or 1% of curve dose maximum respectively. Out of field agreement varied between evaluated beam models.ConclusionsThe RayStation implementation of photon Monte Carlo dose calculations show good agreement with measured data for the range of scenarios considered in this work and is deemed sufficiently accurate for introduction into clinical use.  相似文献   

17.
PurposeThis study aims to investigate the energy response of an optically stimulated luminescent dosimeter known as nanoDot for diagnostic kilovoltage X-ray beams via Monte Carlo calculations.MethodsThe nanoDot response is calculated as a function of X-ray beam quality in free air and on a water phantom surface using Monte Carlo simulations. The X-ray fluence spectra are classified using the quality index (QI), which is defined as the ratio of the effective energy to the maximum energy of the photons. The response is calculated for X-ray fluence spectra with QIs of 0.4, 0.5, and 0.6 with tube voltages of 50–137.6 kVp and monoenergetic photon beams. The surface dose estimated using the calculated response is verified by comparing it with that measured using an ionization chamber.ResultsThe nanoDot response in free air for monoenergetic photon beams (QI = 1.0) varies significantly at photon energies below 100 keV and reaches a factor of 3.6 at 25–30 keV. The response differs by up to approximately 6% between QIs of 0.4 and 0.6 for the same half-value layer (HVL). The response at the phantom surface decreases slightly owing to the backscatter effect, and it is almost independent of the field size. The agreement between the surface dose estimated using the nanoDot and that measured using the ionization chamber for assessing X-ray beam qualities is less than 2%.ConclusionsThe nanoDot response is indicated as a function of HVL for the specified QIs, and it enables the direct surface dose measurement.  相似文献   

18.
In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project.In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.  相似文献   

19.
This study aims to estimate testicular dose and the associated risks for infertility and hereditary effects from inverted-Y field irradiation Radiotherapy was simulated on a humanoid phantom using a 6 MV photon beam. Testicular dose was measured for various field sizes and tissue thicknesses along beam axis using an ionization chamber. Gonadal dose was reduced by placing lead cups around the testes supplemented by a field edge block. For a tumor dose of 40 Gy, testicular dose was 0.56–6.52 Gy depending upon the field size and the distance from the inferior field edge. The corresponding dose to shielded testes was 0.12–1.96 Gy. The increase of tissue thickness in reased the testicular dose up to 40%. An excess risk of hereditary disorders of (7–391) per 10000 births was calculated. The treatment parameters, the presence of gonad shield and the somatometric characteristics determine whether testicular dose can exceed 1 Gy which allows a complete recovery of spermatogenesis.  相似文献   

20.
The dosimetry is described for an investigation of the induction of somatic aberrations in Tradescantia occidentalis by substantially mono-energetic neutrons in the energy range 100 keV to 15 MeV, by 200 keV X-rays and cobalt-60 gamma-radiation. Spectrometry was carried out for both neutrons and X-rays. Neutron fluence was measured by uranium fission chambers. Two types of ionization chamber were employed for dose measurement. One chamber was manufactured of CH-plastic and filled with acetylene and the other of graphite and filled with carbon dioxide. Dosimetry for X- and gamma-radiation was by means of lithium fluoride thermoluminescent dosemeters calibrated against a Victoreen ionization chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号