首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the human fetus, epiphyses appear as a solid avascular cartilaginous mass until the eleventh week of development. Around the third fetal month of development, vascular canals coming from the perichondrium are recognized in the mineralized epiphyseal cartilage. Whether cartilage canals develop by passive inclusion or active chondrolysis is still a matter of controversy. We studied the relationships between the intracanalar cells and the surrounding matrix on human fetal epiphyses embedded in glycol methacrylate. At the blind end of canals both stellate fibroblast-like cells and vacuolated macrophages are observed. These cellular foci show all characteristics of active chondrolysis (loss of metachromasia, lacunae containing cells intimately associated with matrix, and presence of granular debris). Similar resorptive foci have been observed in the pannus of rheumatoid joints and in the embryonic chick growth plate composed of uncalcified cartilage. A cellular cooperation (fibroblast/macrophage) is necessary for uncalcified cartilage breakdown. In the human fetus, monocytes/macrophages have been recognized in the peripheral blood as early as the twelfth week of gestation. Our observations support the view that chondrolysis due to both fibroblasts (of mesenchymal origin) and macrophages is the basic mechanism for cartilage canal development.  相似文献   

3.
4.
Topographic localization of a 116,000-dalton protein in cartilage   总被引:1,自引:0,他引:1  
A disulfide-bonded greater than 400,000-dalton (greater than 400-kD) protein with 116-kD subunits in hyaline cartilage from several species has recently been described. It constitutes 2-4% of the total noncollagenous protein in 4 M guanidinium chloride extracts of normal articular cartilage and accounts for most of the total noncollagen, nonproteoglycan protein synthesized in short-term organ cultures of canine articular cartilage. In the present study, immunofluorescence techniques were used to examine the topographic distribution of the 116-kD subunit protein in normal cartilage. In specimens of normal adult articular cartilage from several species, the protein was located throughout the matrix. More intense staining was observed at the articular surface than in the remainder of the uncalcified cartilage. In contrast, in fetal cartilage, the protein was uniformly distributed throughout the matrix without a marked increase in surface staining. Normal canine menisci and annulus fibrosus also demonstrated moderate fluorescence after incubation with the antiserum to the 116-kD subunit protein. Normal canine nucleus pulposus, synovium, aorta, and monolayer cultures of canine synovial cells exhibited only weak immunofluorescence after incubation with the antiserum. Therefore, the 116-kD subunit protein appears to be a ubiquitous matrix protein in cartilage.  相似文献   

5.
6.
WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.  相似文献   

7.
8.
A newly identified calcium binding protein called chondrocalcin with two subunits of molecular weight approximately 35 000 has been studied in bovine, rat and human cartilage matrix using a monospecific polyclonal antibody. Although it is present in small amounts in non-calcifying cartilage, it occurs in local high concentrations wherever cartilage calcification is observed, namely in the calcifying part of the growth plate and in calcified articular cartilage. Immunoelectron microscopy revealed that it is present in exactly the same discrete sites where mineral is first detected. Thus it may act as a nucleating agent for apatite formation. It is deposited in the same sites where unusual local high concentrations of proteoglycan and link protein are detected by immunoelectron microscopy. Chondrocalcin may bind either directly or indirectly to these molecules. Its occurrence within hypertrophic chondrocytes immediately prior to its extracellular appearance suggests that it is synthesised and released by these cells. Its absence from osteoid during intramembranous calcification indicates a selective involvement in endochondral calcification.  相似文献   

9.
10.
Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family are known to influence development, angiogenesis, coagulation and progression of arthritis. As proteinases their substrates include the von Willebrand factor precursor and extracellular matrix components such as procollagen, hyalectans (hyaluronan-binding proteoglycans including aggrecan), decorin, fibromodulin and cartilage oligomeric matrix protein. ADAMTS levels and activities are regulated at multiple levels through the control of gene expression, mRNA splicing, protein processing and inhibition by TIMP (tissue inhibitor of metalloproteinases). A recent screen of human cartilage has shown that multiple members of the ADAMTS family may be important in connective tissue homeostasis and pathology.  相似文献   

11.
Extracellular phospholipase A2 (PLA2) with proinflammatory activity has recently been discovered in synovial fluids in inflammatory arthritides. In the search for the sources of synovial fluid PLA2, human synovium and articular cartilage were found to contain large quantities of the enzyme. In rheumatoid arthritis (RA), PLA2 activity in synovium, superficial and deep layers of articular cartilage was 20 +/- 14 (SEM), 168 +/- 62 and 533 +/- 176 nmol/min/mg protein respectively. Corresponding values in osteoarthritis (OA) were 49 +/- 11, 569 +/- 109 and 1709 +/- 243 nmol/min/mg protein, all significantly higher (p less than .01) than in RA. Nasal septal cartilage contained much less PLA2, 19 +/- 5.6. PLA2 in human articular and nasal cartilage has sn-2 specificity, a neutral pH optimum and absolute calcium dependence. High PLA2 concentration in articular cartilage may imply that, at least in part, cartilage is the source of PLA2 in the joint space. Since RA cartilage and synovium have less PLA2 activity than the corresponding OA tissues, additional sources of PLA2 in RA synovial fluids are implicated.  相似文献   

12.
This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis.  相似文献   

13.
Bone morphogenetic protein 2B (BMP-2B) also called BMP-4 is one of a family of cartilage and bone-inductive proteins derived from bone matrix and belongs to the transforming growth factor beta (TGF-beta) superfamily. These bone-inductive proteins isolated from adult bone may be involved in bone repair. However, they may also play a role in cartilage and bone formation during embryonic development. To test whether BMP-2B influences cartilage formation by embryonic cells, recombinant human BMP-2B was applied to cultured limb bud mesoderm plated at three different densities. BMP-2B stimulated cartilage formation as assessed by Alcian blue staining and incorporation of radioactive sulfate into sulfated proteoglycans. Cells cultured at all three densities in the presence of 10 ng/ml BMP-2B formed a nearly continuous sheet of cartilage with abundant extracellular matrix and type II collagen. In addition, when cells were cultured in 0.5% serum in the presence of 10 ng/ml of BMP-2B for 5 days there was an increase in alkaline phosphatase as detected by histochemical and biochemical methods. Transforming growth factor beta isoforms (TGF-beta 1 and TGF-beta 2) inhibited sulfate incorporation into proteoglycans in a dose-dependent manner. This inhibition by TGF beta was overcome by recombinant BMP-2B. This study demonstrates that recombinant BMP-2B stimulates cartilage formation by chick limb bud mesoderm in vitro and is further modulated by TGF-beta isoforms.  相似文献   

14.
The nature of the matrix produced by embryonic chicken chondrocytes in cell culture was studied, and compared with adult and embryonic chicken cartilage. Adult chicken cartilage contains a protein-polysaccharide easily extracted with EDTA-sodium chloride at 4 degrees C. Purification of this macromolecule on Bio-Gel P-300 and Bio-Gel A-50m yielded a progressively more homogeneous species in the ultracentrifuge. It contained mostly chondroitin 4-sulphate, some chondroitin 6-sulphate, and keratan sulphate. Embryonic chicken cartilage was previously shown to contain mostly chondroitin 4-sulphate, some chondroitin 6-sulphate and essentially no keratan sulphate. The matrix produced in chondrocyte cell cultures was shown to contain a protein-polysaccharide with alkali-labile linkages of chondroitin 4-sulphate to the protein core. A fraction was isolated from the matrix with many properties of keratan sulphate.  相似文献   

15.
A high-molecular-weight (greater than 400 000) non-collagenous protein has been identified in normal articular cartilage from several mammalian species and in bovine tracheal cartilage. This protein is reduced by 2-mercaptoethanol to subunits with a molecular weight of 116 000, which appear to constitute approx. 2-4% of the total protein detectable by the Lowry assay in 4 M guanidinium chloride extracts of normal bovine and canine articular cartilage. Antiserum to the 116 kDa subunit protein from bovine articular cartilage cross-reacts with the intact and subunit proteins from bovine trachea and from normal canine, porcine and human articular cartilage. This protein is not found in non-cartilagenous tissues, suggesting that it is a cartilage-specific protein. We conclude that the greater than 400 kDa protein and its subunit are ubiquitous and quantitatively significant proteins in hyaline cartilage.  相似文献   

16.
17.
Genetic polymorphisms that encode a tryptophan (Trp) residue in the triple-helical domain of the alpha2 (Trp2) or alpha3 chain (Trp3) of human type IX collagen have been linked to risk of degenerative intervertebral disc disease. To determine whether these two allelic variants express protein that may affect the extracellular matrix of cartilage in vivo, we examined the properties of resident type IX collagen in an anonymous collection of embryonic and fetal human cartilage samples screened for Trp genotypes. No difference was found in the yield and electrophoretic properties of pepsin-solubilized type IX collagen between Trp2, Trp3 and non-Trp cartilage samples. On Western blot analysis, a polyclonal antiserum raised against a synthetic peptide matching the immediate Trp-containing sequence of the Trp3 allele reacted specifically with the alpha3(IX) chain prepared from Trp3 cartilage samples. Two-dimensional peptide mapping of type IX collagen in CNBr-digests of whole tissue gave indistinguishable fingerprints for Trp2, Trp3 and control tissues, including the yield of cross-linked peptides. Analysis of one cartilage sample that was homozygous for the Trp2 allele also gave a normal yield of collagen IX, including its alpha2 chain and a normal profile of cross-linked peptides. Together, the findings indicate that both Trp2 and Trp3 allelic products are incorporated into the cross-linked fibrillar network of developing human cartilage apparently normally. Any pathological consequences are likely, therefore, to be long-term and indirect rather than from overt misassembly of matrix.  相似文献   

18.
We examined bovine fetal epiphyseal and growth plate cartilages by immunofluorescence microscopy and immunoelectron microscopy using monospecific antibodies to a newly discovered cartilage-matrix calcium-binding protein that we now call chondrocalcin. Chondrocalcin was evenly distributed at relatively low concentration in resting fetal epiphyseal cartilage. In growth plate cartilage, it was absent from the extracellular matrix in the zone of proliferating chondrocytes but was present in intracellular vacuoles in proliferating, maturing and upper hypertrophic chondrocytes. The protein then disappeared from the lower hypertrophic chondrocytes and appeared in the adjoining extracellular matrix, where it was selectively concentrated in the longitudinal septa in precisely the same location where amorphous mineral was deposited in large amounts as demonstrated by von Kossa staining and electron microscopy. Mineral then spread out from these "nucleation sites" to occupy much of the surrounding matrix. Matrix vesicles were identified in this calcifying matrix but they bore no observable morphological relationship to these major sites of calcification where chondrocalcin was concentrated. Since chondrocalcin is a calcium-binding protein and has a strong affinity for hydroxyapatite, these observations suggest that chondrocalcin may play a fundamental role in the creation of nucleation sites for the calcification of cartilage matrix in endochondral bone formation.  相似文献   

19.
Human embryonal carcinoma tumor antigen,Gp200/GCTM-2, is podocalyxin   总被引:4,自引:0,他引:4  
We previously characterized a peanut agglutinin-binding tumor antigen, gp200, a surface membrane glycoprotein expressed on human embryonal carcinoma, a malignant stem cell of testicular tumors. Gp200 is remarkably similar to another embryonal carcinoma antigen, GCTM-2, a cell differentiation marker that is also detected in blood of testis cancer patients, yet neither molecular identity is known. We now report the identity of gp200 as podocalyxin. Protein sequence results of gp200 peptides match with podocalyxin sequence. Furthermore, two distinct monoclonal antibodies, specific for podocalyxin, react positively with gp200. Therefore, gp200 is a testicular tumor form of podocalyxin, a surface membrane glycoprotein that was originally discovered as a scaffolding extracellular matrix protein of kidney podocyte cells. Podocalyxin is also expressed on subsets of hematopoietic cells where it has a putative function as a cell adhesion protein. This is the first report of podocalyxin expression on malignant cells.  相似文献   

20.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号