首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

2.
The absolute configuration of cis-epoxyjasmone (−)-2, isolated from Trichosporum cutaneum CCT 1903 whole cells, has been unambiguously established as (7S,8R), [α]D20 −29.0° (c 1.3, CHCl3), by a new two step method, using a regioselective epoxide opening as the key step followed by Mosher acid derivatization.  相似文献   

3.
Five glycosides, 2-(trans-cinnamoyloxy-methyl)-1-butene-4-O-β-d-glucopyranoside (1), 4-(6′-O-trans-cinnamoyl)-(2-hydroxymethyl-4-hydroxy-butenyl-β-d-glucopyranoside (2), 6′′-O-trans-p-coumaroyl-(4-hydroxybenzoyl)-β-d-glucopyranoside (3), 6′-O-(4-methoxy-trans-cinnamoyl) α/β-d-glucopyranose (4) 6′-O-(4′′-methoxy-trans-cinnamoyl)-kaempferol-3-β-d-glucopyranoside (7) along with six known compounds, (+)-isolariciresinol 3a-O-β-d-glucopyranoside (8) (+)-lyoniresinol 3a-O-β-d-glucopyranoside (9), apigenin 7-O-β-d-glucopyranoside (10), quercetin 3-O-β-d-glucopyranoside (11), 6′-O-cinnamoyl-α/β-d-glucopyranose (6) 6’-O-p-coumaroyl-α/β-d-glucopyranose (5) were isolated from the whole plant of Spiraea canescens. Some of these compounds showed potent radical scavenging activity in relevant non-physiological assays. Their structures were determined by NMR spectroscopic and CID mass spectrometric techniques.  相似文献   

4.
The regioselective glycosylation of three isomers of hydroxybenzoic acids was observed in Panax ginseng hairy root cultures. p-Hydroxybenzoic acid (1) and m-hydroxybenzoic acid (2) were converted into their corresponding glycosides (1a and 2a) and glycosyl esters (1b and 2b) while no metabolite of o-hydroxybenzoic acid (3) was detected. A new compound, m-hydroxybenzoic acid β-d-xylopyranosyl (1 → 6)-β-d-glycopyranosyl ester (2c) was identified as a biotransformation product of 2. Further time-course studies of the biotransformation reactions showed that the glycosides were major products in the latter stage. The addition of carbohydrates or antioxidants increased glycosyl esters formation.  相似文献   

5.
The 1,3-oxazine complexes cis- and trans-[PtCl2{ C(R)OCH2CH2C}H22] (cis: R=CH3 (1a), CH2CH3 (2a), (CH3)3C (3a), C6H5 (4a); trans:R =CH3 (1b), C6H5 (4b)) were obtained in 51-71% yield by reaction in THF at 0 °C of the corresponding nitrile complexes cis- and trans-[PtCl2(NCR)2] with 2 equiv. of OCH2CH2CH2Cl, generated by deprotonation of 3-chloro-1-propanol with n-BuLi. The cationic nitrile complexes trans-[Pt(CF3)(NCR)(PPh3)2]BF4 (R=CH3, C6H5) react with 1 equiv, of OCH2CH2CH2Cl to give a mixture of products, including the corresponding oxazine derivatives trans-[Pt(CF3){ CH2}(PPh3)2]BF4 (5 and 6), the chloro complex trans- [Pt(CF3)Cl(PPh3)2] and free oxazine H2. For short reaction times (c. 5–15 min) the oxazine complexes 5 and 6 could be isolated in modest yield (37–49%) from the reaction mixtures and they could be separated from the corresponding chloro complex (yield 40%) by taking advantage of the higher solubility of the latter derivative in benzene. For longer reaction times (> 2 h), trans-[Pt(CF3)Cl(PPh3)2] was the only isolated product. Complex 6 was crystallographically characterized and it was found to contain also crystals of trans- [PtCl{ H2}(PPh3)2]BF4, which prevented a more detailed analysis of the bond lengths and angles within the metal coordination sphere. The 1,3-oxazine ring, which shows an overall planar arrangement, is characterized by high thermal values of the carbon atoms of the methylene groups indicative of disordering in this part of the molecule in agreement with fast dynamic ring processes suggested on the basis of 1H NMR spectra. It crystallizes in the trigonal space group P , with a=22.590(4), b=15.970(3) Å, γ=120°, V=7058(1) Å3 and Z=6. The structure was refined to R=0.059 for 3903 unique observed (I3σ(I)) reflections. A mechanism is proposed for the conversion of nitrile ligands to oxazines in Pt(II) complexes.  相似文献   

6.
Hancornia speciosa Gomes (Apocynaceae) is a Brazilian plant traditionally employed to treat inflammatory conditions, among other uses. The chemopreventive effect of an ethanol extract from H. speciosa leaves (EHS) was evaluated in a battery of in vitro tests [inhibition of aromatase, NF-κB and ornithine decarboxylase (ODC), antioxidant response elements (ARE) induction and cell proliferation assays]. Bioassay-directed fractionation of EHS following by inhibition of 12-O-tetradecanoyl-13-acetate (TPA)-mediated NF-kB activation led to the isolation of the cyclitols quinic acid (1) (85.0±12.3 μM) and l-(+)-bornesitol (2) (IC50=27.5±3.8 μM), along with rutin (26.8±6.3 μM). Based on these lead compounds, the cyclitols per-O-acetyl-1l-(+)-bornesitol (3) (IC50=38.4±6.2 μM), myo-inositol (4) (>180.2 μM), scyllo-inositol (5) (83.0±13.7 μM) and β-d-galactoside-myo-inositol (6) (52.4±8.4 μM) were evaluated in the assay, but found to be somewhat less active than 1 and 2. None of the compounds was active in the ARE, aromatase or ODC assays and did not inhibit proliferation of MCF-7, LNCaP, HepG2 or LU-1 cell lines at a final concentration of 20 μg/ml (equivalent to 104.07–32.76 μM).This work identifies l-(+)-bornesitol, quinic acid and rutin as NF-κB inhibitors of H. speciosa and suggests cyclitols, in addition to myo-inositol, are potentially useful as chemopreventive agents.  相似文献   

7.
Microbial transformation of isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (2) with Aspergillus niger BCRC 32720 and Absidia pseudocylindrospora ATCC 24169 yielded several compounds. In addition to bioconverting the d-ring to lactone and lactam moieties, 4α-carboxy-13α-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7) and 4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (10), one known compound, ent-1β,7α-dihydroxy-16-oxo-beyeran-19-oic acid (6), and five new compounds, ent-7α-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (3), ent-1β,7α-dihydroxy-16-E-hydroxyiminobeyeran-19-oic acid (4), ent-1β-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (5), ent-8β-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (8), and ent-8β-cyanomethyl-13-methyl-13-podocarpen-19-oic acid (9), were isolated from the microbial transformation of 2. Elucidation of the structures of these isolated compounds was primarily based on 1D and 2D NMR, and HRESIMS data, and 35 were further confirmed by X-ray crystallographic analyses. Additionally, the inhibitory effects of all of these compounds were evaluated on NF-κB and AP-1 activation in LPS-stimulated RAW 264.7 macrophages. Among the compounds tested, 5 and 10 significantly inhibited NF-κB activation, with 5 showing equal potency to dexamethasone; 3 and 69 significantly inhibited AP-1 activation, particularly 8, which showed more inhibitory activity than dexamethasone.  相似文献   

8.
In the course of studies on the isolation of bioactive compounds from Philippine plants, the seeds of Moringa oleifera Lam. were examined and from the ethanol extract were isolated the new O-ethyl-4-(α- -rhamnosyloxy)benzyl carbamate (1) together with seven known compounds, 4(α- -rhamnosyloxy)-benzyl isothiocyanate (2), niazimicin (3), niazirin (4), β-sitosterol (5), glycerol-1-(9-octadecanoate) (6), 3-O-(6′-O-oleoyl-β- -glucopyranosyl)-β-sitosterol (7), and β-sitosterol-3-O-β- -glucopyranoside (8). Four of the isolates (2, 3, 7, and 8), which were obtained in relatively good yields, were tested for their potential antitumor promoting activity using an in vitro assay which tested their inhibitory effects on Epstein–Barr virus-early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). All the tested compounds showed inhibitory activity against EBV-EA activation, with compounds 2, 3 and 8 having shown very significant activities. Based on the in vitro results, niazimicin (3) was further subjected to in vivo test and found to have potent antitumor promoting activity in the two-stage carcinogenesis in mouse skin using 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as tumor promoter. From these results, niazimicin (3) is proposed to be a potent chemo-preventive agent in chemical carcinogenesis.  相似文献   

9.
Santonin (1) was incubated with separate growing cultures of Aspergillus niger ATCC 9142, Mucor plumbeus ATCC 4740, Whetzelinia sclerotiorum ATCC 18687, Cunninghamella echinulata var. elegans ATCC 8688a and Phanerochaete chrysosporium ATCC 24725. Three novel metabolites were isolated: 11β,13-dihydroxysantonin (3), 6,7-dehydosantonin (5) and 3,6-dihydroxy-9-keto-9,10-seco-selina-1,3,5(10)-trien-12-oic acid-12,6-lactone (7). 11β-Hydroxysantonin (2), 14-hydroxysantonin (4) and 3,6,9-trihydroxy-9,10-seco-selina-1,3,5(10)-trien-12-oic acid-12,6-lactone (6) were also isolated. Hydroxylation at C-9 followed by a retro-aldol reaction was postulated to have produced 6 and 7. Through the synthesis and fermentation of the santonin analogues: tetrahydrosantonin (8) and α-desmotroposantonin (12), several new compounds were obtained; the most significant being 9-keto-desmotroposantonin (14), which was indicative of C-9 monohydroxylation.  相似文献   

10.
Suspension cultures of Caragana chamlagu (Leguminosae) convert (±)-α-ionone (1) into (±)-3-oxo-α-ionone (3) as the major product and β-ionone (2) into 5,6-epoxy-β-ionone (6) as the sole product. It is interesting to note that the cultured cells of C. chamlagu convert regioselectively the cycloolefinic part of 1 into the corresponding unsaturated carbonyl compound, allylic alcohol and epoxide as the oxidation products, whereas the suspension cultures of Nicotiana tabacum (Solanaceae) convert the unsaturated carbonyl of 1 into the corresponding saturated ketones and alcohols as reduction products.  相似文献   

11.
Mucor genevensis were used to bioconvert sinenxan A [2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene], a taxoid isolated from callus tissue cultures of Taxus spp., and 10 metabolites were obtained. On the basis of chemical and spectroscopic data analyses, their structures were determined as 10β-methoxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (2), 10β-hydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (3), 2α,5α,10β,14β-tetraacetoxy-4β,20-epoxy-taxa-11(12)-ene (4), 6α-hydroxy-2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene (5), 9α-hydroxy-2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene (6), 10β-hydroxy-2α,5α,14β-triacetoxy-4β,20-epoxy-taxa-11(12)-ene (7), 6α,10β-dihydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (8), 6α-hydroxy-2α,5α,10β,14β-tetraacetoxy-4β,20-epoxy-taxa-11(12)-ene (9), and 9α,10β-dihydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (10), and 9α,10β-O-(propane-2,2-diyl)-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (11). Among them, metabolites 2, 4, and 9 were three new compounds. The three major metabolites 2, 3, and 4 along with 1 were pharmacologically evaluated for their multi-drug resistance (MDR) reversal activities towards taxol-resistant A549 tumor cells, and the results showed that 4 possessed about two-fold activity as verapamil, while 2, and 3 possessed lower activity than verapamil and 1.  相似文献   

12.
Biotransformation of 20(S)-protopanaxadiol (1) by the fungus Mucor spinosus AS 3.3450 yielded eight metabolites (29). On the basis of NMR and MS analyses, the metabolites were identified as 12-oxo-15α,27-dihydroxyl-20(S)-protopanaxadiol (2), 12-oxo-7β,11α,28-trihydroxyl-20(S)-protopanaxadiol (3), 12-oxo-7β,28-dihydroxyl-20(S)-protopanaxadiol (4), 12-oxo-15α,29-dihydroxyl-20(S)-protopanaxadiol (5), 12-oxo-7β,15α-dihydroxyl-20(S)-protopanaxadiol (6), 12-oxo-7β,11β-dihydroxyl-20(S)-protopanaxadiol (7), 12-oxo-15α-hydroxyl-20(S)-protopanaxadiol (8), and 12-oxo-7β-hydroxyl-20(S)-protopanaxadiol (9), respectively. Among them, 25, 7, and 8 are new compounds. These results indicated that M. spinosus could catalyze the specific C-12 dehydrogenation of 20(S)-protopanaxadiol, as well hydroxylation at different positions. These biocatalytic reactions may be difficult for chemical synthesis. The biotransformed products showed weak in vitro cytotoxic activities.  相似文献   

13.
X-ray crystal analyses of divalent copper, cobalt and calcium complexes of monoanionic (3-hydroxy-5-(hydroxymethyl)-2-methylisonicotinic acid) 5-phosphate (L1C8H9NO7P) revealed the chemical compositions of Cu ---L·3H2O(1), Co ---L·5H2O(2) and Ca·L2·7H2O (3) and the coordination structures which depend on the coordination abilities and chemical properties of the respective metal ions. Although 1 and 2 crystals showed similar features, i.e., presence of the metal ion at the crystallographic center of symmetry and octahedral six-coordination, the patterns of coordination with the ligand molecules differed. While direct coordination to the L carboxyl oxygen was observed in 1 crystals, all ligation positions in 2 crystals were occupied by water molecules. On the other hand, 3 crystals formed a pentagonal bipyramidal structure (seven-coordination), where oxygens of L phosphates and water molecules coordinated to the calcium ion. Each of the complex structures showed characteristic molecular packing depending on the pattern of coordination to the respective metal ion. L is monoanionic in all complex crystals, where the phosphate and carboxyl groups are deprotonated and pyridine nitrogen is protonated, and is neutralized by each metal ion. Crystal data: 1, monoclinic, space group P21/c, A = 5.4129(6), B = 10.515(2), C = 22.770(2) Å, β = 91.853(9)°, Z = 4, R = 0.0404 for 1834 observed reflections; 2, triclinic, space group

, c = 6.789(3) Å, α = 96.84(3), β = 109.10(3), γ = 100.50(2)°, Z = 2, R = 0.0684 for 1605 observed reflections; 3, triclinic, , a = 10.069(2), B = 14.501(3), c = 10.051(1) Å, α = 100.75(1), β = 97.28(2), γ = 76.18(2)°, Z = 2, R = 0.0540 for 3637 observed reflections.  相似文献   

14.
Cycloaddition reactions with α,β-unsaturated carbene complexes of the Fischer-type bearing the carbene carbon atom and the double bond incorporated in the same ring are described. Pentacarbonyl(2H-benzopyran-2- ylidene)chromium(0) complexes (2a-c) and pentacarbonyl(4-methoxy-3,3-dimethyl-2-oxacyclopentylidene)- chromium(0) (3) show a rather low reactivity towards 1,3-dipoles and 1,3-dienes. The reactions with diazomethane are regioselective but not chemoselective; compounds 2 and 3 show two sites of attack: the α,β carbon-carbon and the carbon-metal double bond. The crystal and molecular structures of 2a and 3 have been elucidated by single crystal X-ray analysis. Crystals of 2a are monoclinic, space group P21/c, a=7.614(3), b=14.033(3), c=12.766(3) Å, β=95.24°, V=1358.3(7) Å Z=4; crystals of 3 are triclinic, space group P , a=6.553(1), b=9.408(1), c=10.620(1) Å α=92.70(1), β=92.30(1), γ=92.12(1)°, V=653.0(1), Å3, Z=2. Final agreement indices for 2a and 3 are R=0.034 and 0.033, respectively. Vibrational properties of the Cr(CO)5 moiety were interpreted by FT-IR and FT-Raman spectroscopy. Electronic spectra and π electron distribution were interpreted by resonance Raman spectroscopy.  相似文献   

15.
Derivatives of (S)-2-fluoro- -daunosamine and (S)-2-fluoro- -ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy- -glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-α- -glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α- -altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-α- -gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-β- -galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-α- -altropyranoside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H–19F coupling constants, in comparison with the reported effects of oxyge substituents.  相似文献   

16.
Molecular combinations of two antioxidants (i.e., ascorbic acid and the pharmacophore of α-tocopherol), namely the 2,3-dihydroxy-2,3-enono-1,4-lactone and the chromane residues, have been designed and tested for their radical scavenging activities. When evaluated for their capability to inhibit malondialdehyde (MDA) production in rat liver microsomal membranes, the 3,4-dihydroxy-5R-2(R,S)-(6-hydroxy-2,5,7,8-tetramethylchroman-2(R,S)yl-methyl)-1,3]dioxolan-4S-yl]-5H-furan-2-one (11ad), exhibited an interesting activity. In particular the 5R,2R,2R,4S and 5R,2R,2S,4S isomers (11c,d) displayed a potent antioxidant effect compared to the respective synthetic α-tocopherol analogue (5) and natural α-tocopherol or ascorbic acid, used alone or in combination. Moreover, the mixture of stereoisomers 11ad also proved to be effective in preventing damage induced by reperfusion on isolated rabbit heart, in particular at the higher concentration of 300 μM. In view of these results our study represents a new approach to potential therapeutic agents for applications in pathological events in which a free radical damage is involved. Design, synthesis and preliminary biological activity are discussed.  相似文献   

17.
A platform for screening drugs for their ability to protect neuronal cells against cytotoxicity was developed. Nerve growth factor (NGF) differentiates PC12 cells into nerves, and these differentiated PC12 cells enter apoptosis when challenged with 6-hydroxydopamine (6-OHDA). A screening spectrophotometer was used to assay cytotoxicity in these cells; pretreatment with test samples allowed identification of compounds that protected against this neuronal cytotoxicity. The 95% ethanol extract of Phoenix hanceana Naudin var. formosana Beccari. (PH) showed potential neuroprotective activity in these assays. The PH ethanol extract was further fractionated by sequential partitioning with n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water. Subsequent rounds of assaying resulted in the isolation of ten constituents, and their structures were characterized by various spectroscopic techniques and identified by comparison with previous data as: isoorientin (1), isovitexin (2), veronicastroside (3), luteolin-7-O-β-d-glucopyranoside (4), isoquercitrin (5), tricin-7-neohesperidoside (6), tricin-7-O-β-d-gluco-pyranoside (7), (+)-catechin (8), (−)-epicatechin (9), and orientin 7-O-β-d-glucopyranoside (10). Among these compounds, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4) and (+)-catechin (8) showed significant neuroprotective activity in cell viability (WST-8 reduction), anti-apoptosis (Annexin V-FITC/propidium iodide double-labeled flow cytometry), and cellular ROS scavenging assays (besides isovitexin (2)), as well as a decreased caspase-8 activity in 6-OHDA-induced PC12 cells. Hence, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4), and (+)-catechin (8) protected PC12 cells from 6-OHDA-induced apoptotic neurotoxicity.  相似文献   

18.
The preparation and X-ray structure of [Ag(9-EtGH-N7)2]NO3·H2O(9-EtGH=neutral 9-ethylguanine) is reported. The compound crystallizes in the triclinic system, space group P with a=7.063(6), b=7.153(3), c=11.306(10) Å, α=83.36(6), β=76.66(7), γ=81.44(6)°. The cation is centrosymmetric with Ag(I) coordinated via two N7 positions and Ag---N7 bond lengths of 2.11(1) Å. Applying 109Ag NMR spectroscopy, complex formation constants for both the 1:1 complex (log β1=0.6) and the title compound (log β2=1.6) in Me2SO have been determined.  相似文献   

19.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

20.
Aquatic crustaceans often play a major role in organic matter (OM) transformation and recycling through their feeding and excretory activities. In this study, we measured the isotopic and elemental composition of organic matter fed to Palaemonetes sp. shrimp and the fecal pellets they produced. Nitrogen (N) content of the food (8.2 ± 0.2%, mean ± SD) was significantly higher than the fecal pellets (2.0 ± 0.9%), a pattern that also applied to the carbon (C) content of food (46.7 ± 1.0%) and fecal pellets (14.3 ± 6.8%). We also found a significant decrease in the N content of undigested, macerated food (6.1 ± 0.9 %) relative to food that had been soaked in artificial seawater (ASW) and artificial seawater that had previously contained shrimp (CASW) in the absence of feeding shrimp. We found no significant difference in N or C isotopic composition between the dry food, ASW- and CASW-soaked control food, and fecal pellets. We did, however, observe a significant increase in δ15N of the undigested, macerated food (δ15= 6.3 ± 0.6‰) relative to both the dry flake food (δ15= 5.6 ± 0.2‰) and controls incubated in the absence of shrimp in either ASW (δ15N = 5.6 ±0.3‰) or CASW (δ15N = 5.8 ± 0.1‰). Our results differ from previous findings of isotopic alteration of OM during processing by crustaceans (copepods), suggesting that isotopic changes related to feeding might be either taxon- or food-specific. This study also provides information on the influence of grazers/shredders on both the elemental and isotopic composition of POM, suggesting that larger aquatic shredders can influence the chemical composition of particles by either physical manipulation of the POM (release of DOM) or by facilitating microbial colonization of the POM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号