首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic or nutritional disorders in homocysteine (Hcy) metabolism elevate Hcy-thiolactone and cause heart and brain diseases. Hcy-thiolactone has been implicated in these diseases because it has the ability to modify protein lysine residues and generate toxic N-Hcy-proteins with auto-immunogenic, pro-thrombotic, and amyloidogenic properties. Bleomycin hydrolase (Blmh) has the ability to hydrolyze L-Hcy-thiolactone (but not D-Hcy-thiolactone) to Hcy in vitro, but whether this reflects a physiological function has been unknown. Here, we show that Blmh (-/-) mice excreted in urine 1.8-fold more Hcy-thiolactone than wild-type Blmh (+/+) animals (P = 0.02). Hcy-thiolactone was elevated 2.3-fold in brains (P = 0.004) and 2.0-fold in kidneys (P = 0.047) of Blmh (-/-) mice relative to Blmh (+/+) animals. Plasma N-Hcy-protein was elevated in Blmh (-/-) mice fed a normal (2.3-fold, P < 0.001) or hyperhomocysteinemic diet (1.5-fold, P < 0.001), compared with Blmh (+/+) animals. More intraperitoneally injected L-Hcy-thiolactone was recovered in plasma in Blmh (-/-) mice than in wild-type Blmh (+/+) animals (83.1 vs. 39.3 μM, P < 0.0001). In Blmh (+/+) mice injected intraperitoneally with D-Hcy-thiolactone, D,L-Hcy-thiolactone, or L-Hcy-thiolactone, 88, 47, or 6.3%, respectively, of the injected dose was recovered in plasma. The incidence of seizures induced by L-Hcy-thiolactone injections (3,700 nmol/g body weight) was higher in Blmh (-/-) than in Blmh (+/+) mice (93.8 vs. 29.5%, P < 0.001). Using the Blmh null mice, we provide the first direct evidence that a specific Hcy metabolite, Hcy-thiolactone, rather than Hcy itself, is neurotoxic in vivo. Taken together, our findings indicate that Blmh protects mice against L-Hcy-thiolactone toxicity by metabolizing it to Hcy and suggest a mechanism by which Blmh might protect against neurodegeneration associated with hyperhomocysteinemia and Alzheimer's disease.  相似文献   

2.
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1?/? mice. The lack of deleterious phenotypes in Surf1?/? mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1?/? vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1?/? mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1?/? mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1?/? adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1?/? mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1?/? mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan.  相似文献   

3.
Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 ?/? Apoe ?/? mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 +/+ Apoe ?/? or Cav-1 ?/? Apoe ?/? mice and vice versa. We found that Cav-1 +/+ mice harboring Cav-1 ?/? BM-derived macrophages developed significantly larger lesions than Cav-1 +/+ mice harboring Cav-1 +/+ BM-derived macrophages. Cav-1 ?/? macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.  相似文献   

4.
Dennd5b plays a pivotal role in intestinal absorption of dietary lipids in mice and is associated with body mass index in humans. This study examined the impact of whole-body Dennd5b deletion on plasma lipid concentrations, atherosclerosis, and hepatic lipid metabolism in mice. Hypercholesterolemia was induced in Dennd5b?/? mice by infection with an adeno-associated virus expressing the proprotein convertase subtilisin/kexin type 9 serine protease (PCSK9) gain-of-function mutation (PCSK9D377Y) and feeding a Western diet for 12 weeks. Body weight and plasma lipid concentrations were monitored over 12 weeks, and then aortic atherosclerosis and hepatic lipid content were quantified. Compared to Dennd5b+/+ mice, Dennd5b?/? mice were resistant to diet-induced weight gain and PCSK9-induced hypercholesterolemia. Atherosclerosis quantified by en face analysis and in aortic root sections, revealed significantly smaller lesions in Dennd5b?/? compared to Dennd5b+/+ mice. Additionally, Dennd5b?/? mice had significantly less hepatic lipid content (triglyceride and cholesterol) compared to Dennd5b+/+ mice. To gain insight into the basis for reduced hepatic lipids, quantitative PCR was used to measure mRNA abundance of genes involved in hepatic lipid metabolism. Key genes involved in hepatic lipid metabolism and lipid storage were differentially expressed in Dennd5b?/? liver including Pparg, Cd36, and Pnpla3. These findings demonstrate a significant impact of Dennd5b on plasma and hepatic lipid concentrations and resistance to PCSK9-induced hypercholesterolemia in the absence of Dennd5b.  相似文献   

5.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

6.
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep ?/? mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep ?/? mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep ?/? mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep ?/? mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep ?/? mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.  相似文献   

7.
BackgroundCyclin E1 is the regulatory subunit of cyclin-dependent kinase 2 (Cdk2) and one of the central players in cell cycle progression. We recently showed its crucial role for initiation of liver fibrosis and hepatocarcinogenesis. In the present study, we investigated the role of Cyclin E1 in the development of alcohol-associated liver disease (ALD).MethodsMice with constitutive (E1?/?), hepatocyte-specific (Cyclin E1Δhepa), or intestinal-epithelial-cell-specific (Cyclin E1ΔIEC) inactivation of Cyclin E1 and corresponding wild type littermate controls (WT) were administered either a Lieber-DeCarli ethanol diet (LDE) for 3 weeks or acute ethanol binges (6 g/kg) through oral gavage. Serum parameters of liver functionality were measured; hepatic tissues were collected for biochemical and histological analyses.ResultsThe administration of acute EtOH binge and chronic LDE diet to E1?/? mice enhanced hepatic steatosis, worsened liver damage and triggered body weight loss. Similarly, in the acute EtOH binge model, Cyclin E1Δhepa mice revealed a significantly worsened liver phenotype. In contrast, inactivation of Cyclin E1 only in intestinal epithelial cell (IECs)did not lead to any significant changes in comparison to WT mice after acute EtOH challenge. Remarkably, both acute and chronic EtOH administration in E1?/? animals resulted in increased levels of ADH and decreased expression of ALDH1/2. The additional application of a pan-Cdk inhibitor (S-CR8) further promoted liver damage in EtOH-treated WT mice.ConclusionOur data point to a novel unexpected role of Cyclin E1 in hepatocytes for alcohol metabolism, which seems to be independent of the canonical Cyclin E1/Cdk2 function as a cell cycle regulator.  相似文献   

8.
FXR regulates bile acid metabolism, and FXR null (Fxr?/?) mice have elevated bile acid levels and progressive liver injury. The inositol-requiring enzyme 1α/X-box binding protein 1 (XBP1) pathway is a protective unfolded protein response pathway activated in response to endoplasmic reticulum stress. Here, we sought to determine the role of the inositol-requiring enzyme 1α/XBP1 pathway in hepatic bile acid toxicity using the Fxr?/? mouse model. Western blotting and quantitative PCR analysis demonstrated that hepatic XBP1 and other unfolded protein response pathways were activated in 24-week-old Fxr?/? compared with 10-week-old Fxr?/? mice but not in WT mice. To further determine the role of the liver XBP1 activation in older Fxr?/? mice, we generated mice with whole-body FXR and liver-specific XBP1 double KO (DKO, Fxr?/?Xbp1LKO) and Fxr?/?Xbp1fl/fl single KO (SKO) mice and characterized the role of hepatic XBP1 in cholestatic liver injury. Histologic staining demonstrated increased liver injury and fibrosis in DKO compared with SKO mice. RNA sequencing revealed increased gene expression in apoptosis, inflammation, and cell proliferation pathways in DKO mice. The proapoptotic C/EBP-homologous protein pathway and cell cycle marker cyclin D1 were also activated in DKO mice. Furthermore, we found that total hepatic bile acid levels were similar between the two genotypes. At age 60 weeks, all DKO mice and no SKO mice spontaneously developed liver tumors. In conclusion, the hepatic XBP1 pathway is activated in older Fxr?/? mice and has a protective role. The potential interaction between XBP1 and FXR signaling may be important in modulating the hepatocellular cholestatic stress responses.  相似文献   

9.
Polymorphisms of phospholipase A2VIA (iPLA2β or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2β/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2β-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6?/?) and hepatocyte- (LPla2g6?/?) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6?/? mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6?/? mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6?/? mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6?/? mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6?/? mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.  相似文献   

10.
Superoxide dismutase 1 (SOD1) is an important antioxidative enzyme that protects skin from oxidative stress. SOD1 ?/? mice with a genetic background of b129Sv mice showed facial skin damage after 15 weeks of age. Eyelid swelling occurred as the initial symptom and caused impairment by triggering self-scratching. The period required for wound healing in the back was markedly delayed in 20-week SOD1 ?/? mice. Oxidative stress markers, 4-hydroxynonenal and thiobarbituric acid-reactive substances, were unexpectedly lower in SOD1 ?/? mice at day 1 after wounding. The decay rate of electron paramagnetic resonance signal intensity of intravenously injected nitroxide radical indicated that the half-life of the signal intensity was significantly prolonged in the wounded skin of SOD1 +/+ mice. However, while the half-life of the signal intensity in control skin was a little longer in SOD1 ?/? mice, it did not change in wounded skin. Taken together, these data suggest that the skin of SOD1 ?/? mice is in redox imbalance and prone to damage by wounding.  相似文献   

11.
Nonalcoholic steatohepatitis (NASH) is a progressive disease and poses a high risk of severe liver damage. However, the pathogenesis of NASH is still unclear. Accumulation of lipid droplets and insulin resistance is the hallmark of NASH. Pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) plays key role in glucose metabolism via regulating the activity of pyruvate dehydrogenase complex (PDC). Here, we demonstrated a novel of PDK4 in NASH by regulating hepatic steatosis and insulin signaling pathway in methionine and choline deficient (MCD) diet induced NASH model. Hepatic PDK4 levels were highly induced in human patients with NASH and MCD diet fed mice, as well as in hepatocytes treated with oleic acid. The glucose and lipid metabolism were impaired in Pdk4?/? mice. Pdk4 deficiency ameliorated the hepatic steatosis significantly in NASH mice. Pdk4?/?-MCD mice had reduced liver weights and triglyceride (TG) levels. And Pdk4 deficiency dramatically reduced the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis. In addition, elevated phosphorylated AMPK (p-AMPK), p-SAPK/JNK and diminished p-ERK, p-P38, p-Akt and p-mTOR/p-4EBP1 proteins were observed. In conclusion, our data indicated that PDK4 potentially contributes to the hepatic steatosis in NASH via regulating several signaling pathway and PDK4 may be a new therapeutic strategy against NAFLD.  相似文献   

12.
The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr?/?) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers. We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr?/? mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia.  相似文献   

13.
Angiopoietin-like protein family 4 (Angptl 4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). We generated ApoE−/−Angptl 4−/− mice to study the effect of Angptl 4 deficiency on lipid metabolism and atherosclerosis. Fasting and postolive oil-loaded triglyceride (TG) levels were largely decreased in ApoE−/−Angptl 4−/− mice compared with and ApoE−/−Angptl 4+/+ mice. There was a significant (75 ± 12%) reduction in atherosclerotic lesion size in ApoE−/−Angptl 4−/− mice compared with ApoE−/− Angptl 4+/+ mice. Peritoneal macrophages, isolated from Angptl 4−/− mice to investigate the foam cell formation, showed a significant decrease in newly synthesized cholesteryl ester (CE) accumulation induced by acetyl low-density lipoprotein (acLDL) compared with those from Angptl 4+/+ mice. Thus, genetic knockout of Angptl 4 protects ApoE−/− mice against development and progression of atherosclerosis and strongly suppresses the ability of the macrophages to become foam cells in vitro.  相似文献   

14.
Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.  相似文献   

15.
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt?/? mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt?/? mice. Treatment with vitamin E (0.5?g/kg) for 3?weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt?/? mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.  相似文献   

16.
Angiopoietin-like protein 3 (Angptl3)–lipoprotein lipase (LPL) pathway may be a useful pharmacologic target for hyperlipidemia. The present study was conducted to test the effect of soluble fiber extracted from Undaria pinnatifida (UP), on hyperlipidemia in apolipoprotein E-deficient (ApoE?/?) mice. Forty mice were divided into four groups (n?=?10): control group (C57BL/6J mice), ApoE?/? mice group, and two groups of ApoE?/? mice treated with UP fiber (5 or 10 % per day). UP soluble fiber treatment significantly decreased plasma and hepatic total cholesterol, triglycerides levels, plasma low-density lipoprotein cholesterol, and malondialdehyde concentrations and increased plasma high-density lipoprotein cholesterol level and downregulated protein expression of Angptl3 concomitantly with upregulated protein expression of LPL. In addition, T0901317 caused elevated expression of hepatic Angptl3 protein, and the effect of T0901317 was also abrogated by UP soluble fiber in C57BL/6J mice. The present results suggest that the UP soluble fiber regulates Angptl3-LPL pathway to lessen hyperlipidemia in mice.  相似文献   

17.
Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as well as in the nucleus suggests that mutations in mitochondrial DNA (mtDNA) contribute to the carcinogenesis in the myh?/?/ogg1?/? double knockout mouse.In order to test this hypothesis, we analyzed mtDNA mutagenesis and mitochondrial function in young (1 month) and adult (6 months) wt and myh?/?/ogg1?/? mice. To our surprise, the absence of OGG1 and MYH had no impact on mtDNA mutation rates in these mice, even at the onset of cancer. This indicates that mtDNA mutagenesis is not responsible for the carcinogenesis of myh?/?/ogg1?/? mice. In line with these results, mitochondrial function was unaffected in the cancerous tissues liver and lung, whereas a significant reduction in respiration capacity was observed in brain mitochondria from the adult myh?/?/ogg1?/? mouse. The reduced respiration capacity correlated with a specific reduction (?25%) in complex I biochemical activity in brain mitochondria.Our results demonstrate that mtDNA mutations are not associated with cancer development in myh?/?/ogg1?/? mice, and that impairment of mitochondrial function in brain could be linked to nuclear DNA mutations in this strain. OGG1 and MYH appear to be dispensable for antimutator function in mitochondria.  相似文献   

18.

Background

Apoe-deficient (Apoe ?/?) mice develop progressive atherosclerotic lesions with age but no severe renal pathology in the absence of additional challenges. We recently described accelerated atherosclerosis as well as marked renal injury in Apoe ?/? mice deficient in the mesenchymal integrin chain Itga8 (Itga8 ?/?). Here, we used this Apoe ?/?, Itga8 ?/? mouse model to investigate the sex differences in the development of atherosclerosis and concomitant renal injury. We hypothesized that aging female mice are protected from vascular and renal damage in this mouse model.

Methods

Apoe ?/? mice were backcrossed with Itga8 ?/? mice. Mice were kept on a normal diet. At the age of 12 months, the aortae and kidneys of male and female Apoe ?/? Itga8 +/+ mice or Apoe ?/? Itga8 ?/? mice were studied. En face preparations of the aorta were stained with Sudan IV (lipid deposition) or von Kossa (calcification). In kidney tissue, immunostaining for collagen IV, CD3, F4/80, and PCNA and real-time PCR analyses for Il6, Vegfa, Col1a1 (collagen I), and Ssp1 (secreted phosphoprotein 1, synonym osteopontin) as well as ER stress markers were performed.

Results

When compared to male mice, Apoe ?/? Itga8 +/+ female mice had a lower body weight, equal serum cholesterol levels, and lower triglyceride levels. However, female mice had increased aortic lipid deposition and more aortic calcifications than males. Male Apoe ?/? mice with the additional deficiency of Itga8 developed increased serum urea, glomerulosclerosis, renal immune cell infiltration, and reduced glomerular cell proliferation. In females of the same genotype, these renal changes were less pronounced and were accompanied by lower expression of interleukin-6 and collagen I, while osteopontin expression was higher and markers of ER stress were not different.

Conclusions

In this model of atherosclerosis, the female sex is a risk factor to develop more severe atherosclerotic lesions, even though serum fat levels are higher in males. In contrast, female mice are protected from renal damage, which is accompanied by attenuated inflammation and matrix deposition. Thus, sex affects vascular and renal injury in a differential manner.
  相似文献   

19.
The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1?/? mice. In Acsl1?/? mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1?/? mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号