首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Key message

In this study, we identified several genes, which potentially contribute to phenological variation in the grapevine. This may help to maintain consistent yield and suitability of particular varieties in future climatic conditions.

Abstract

The timing of major developmental events in fruit crops differs with cultivar, weather conditions and ecological site. This plasticity results also in diverse levels of fruitfulness. Identifying the genetic factors responsible for phenology and fertility variation may help to improve these traits to better match future climates. Two Vitis vinifera populations, an F1 progeny of Syrah × Pinot Noir and a phenological core collection composed of 163 cultivars, were evaluated for phenology and fertility subtraits during three to six growing seasons in the same geographical location. The phenotypic variability in the core collection mostly overlapped with that observed in the F1 progeny and several accessions had exceeding values of phenological response. The progeny population was used together with SSR and SNP markers to map quantitative trait loci (QTLs). This allowed us to detect nine QTLs related to budburst, flowering beginning, the onset of ripening (véraison) and total fertility, explaining from 8 to 44 % of phenotypic variation. A genomic region on chromosome 15 was associated with budburst and véraison and two QTLs for fruitfulness were located on chromosomes 3 and 18. Several genes potentially affecting fertility and the timing of fruit development were proposed, based on their position and putative function. Allelic variation at these candidate loci may be explored by sampling accessions from the core collection.  相似文献   

2.

Key message

Identification and allele-specific marker development of a functional SNP of HvLox - 1 which associated with barley lipoxygenase activity.

Abstract

Improving the stability of the flavor of beer is one of the main objectives in breeding barley for malting, and lipoxygenase-1 (LOX-1) is a key enzyme controlling this trait. In this study, a modified LOX activity assay was used for null LOX-1 mutant screening. Four barley landraces with no detected level of LOX-1 activity were screened from 1,083 barley germplasm accessions from China. The genomic sequence diversity of the HvLox-1 gene of the four null LOX-1 Chinese landraces was compared with that of a further 76 accessions. A total of 104 nucleotide polymorphisms were found, which contained 83 single-nucleotide polymorphisms (SNPs), 7 multiple-nucleotide polymorphisms, and 14 insertions and deletions. Most notably, we found a rare C/G mutation (SNP-61) in the second intron which led to null LOX-1 activity through an altered splicing acceptor site. In addition, an allele-specific polymerase chain reaction marker was developed for the genotyping of SNP-61, which could be used in breeding programs for barley to be used for malting. The objective was to improve beer quality.  相似文献   

3.

Key message

Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton.

Abstract

Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton.  相似文献   

4.

Key message

Simple sequence repeat motifs were mined from the genome and EST sequences of Morus notabilis and archived in MulSatDB. Bioinformatics tools were integrated with the database for the analysis of genomic datasets.

Abstract

Mulberry is a crop of economic importance in sericulture, which shapes the lives of millions of rural people among different Eurasian and Latin American countries. Limited availability of genomic resources has constrained the molecular breeding efforts in mulberry, a poorly studied crop. Microsatellite or simple sequence repeat (SSR) has revolutionized the plant breeding and is used in linkage mapping, association studies, diversity, and parentage analysis, etc. Recent availability of mulberry whole genome assembly provided an opportunity for the development of mulberry-specific DNA markers. In this study, we mined a total of 217,312 microsatellites from whole genome and 961 microsatellites from EST sequences of Morus notabilis. Mono-repeats were predominant among both whole genome and EST sequences. The SSR containing EST sequences were functionally annotated, and SSRs mined from whole genome were mapped on chromosomes of the phylogenetically related genus—Fragaria vesca, to aid the selection of markers based on the function and location. All the mined markers were archived in the mulberry microsatellite database (MulSatDB), and the markers can be retrieved based on different criteria like marker location, repeat kind, motif type and size. Primer3plus and CMap tools are integrated with the database to design primers for PCR amplification and to visualize markers on F. vesca chromosomes, respectively. A blast tool is also integrated to collate new markers with the database. MulSatDB is the first and complete destination for mulberry researchers to browse SSR markers, design primers, and locate markers on strawberry chromosomes. MulSatDB is freely accessible at http://btismysore.in/mulsatdb.  相似文献   

5.

Key message

The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed.

Abstract

Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73–0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.  相似文献   

6.

Key message

Marker-free transgenic eggplants, exhibiting enhanced resistance to Alternaria solani , can be generated on plant growth regulators (PGRs)- and antibiotic-free MS medium employing the multi-auto-transformation (MAT) vector, pMAT21 - wasabi defensin , wherein isopentenyl transferase ( ipt ) gene is used as a positive selection marker.

Abstract

Use of the selection marker genes conferring antibiotic or herbicide resistance in transgenic plants has been considered a serious problem for environment and the public. Multi-auto-transformation (MAT) vector system has been one of the tools to excise the selection marker gene and produce marker-free transgenic plants. Ipt gene was used as a selection marker gene. Wasabi defensin gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), was used as a gene of interest. Wasabi defensin gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledon explants of eggplant were cultured on PGRs- and antibiotic-free MS medium. Extreme shooty phenotype/ipt shoots were produced by the explants infected with the pMAT21-wasabi defensin (WD). The same PGRs- and antibiotic-free MS medium was used in subcultures of the ipt shoots. Subsequently, morphologically normal shoots emerged from the Ipt shoots. Molecular analyses of genomic DNA from transgenic plants confirmed the integration of the WD gene and excision of the selection marker (ipt gene). Expression of the WD gene was confirmed by RT-PCR and Northern blot analyses. In vitro whole plant and detached leaf assay of the marker-free transgenic plants exhibited enhanced resistance against Alternaria solani.  相似文献   

7.

Key message

Wild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding.

Abstract

Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species Vitis vinifera. Biochemically 3-O-glucoside anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.  相似文献   

8.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

9.

Key message

After cloning and mapping of wheat TaSdr genes, both the functional markers for TaSdr - B1 and TaVp - 1B were validated, and the distribution of allelic variations at TaSdr - B1 locus in the wheat cultivars from 19 countries was characterized.

Abstract

Seed dormancy is a major factor associated with pre-harvest sprouting (PHS) in common wheat (Triticum aestivum L.). Wheat TaSdr genes, orthologs of OsSdr4 conferring seed dormancy in rice, were cloned by a comparative genomics approach. They were located on homoeologous group 2 chromosomes, and designated as TaSdr-A1, TaSdr-B1 and TaSdr-D1, respectively. Sequence analysis of TaSdr-B1 revealed a SNP at the position -11 upstream of the initiation codon, with bases A and G in cultivars with low and high germination indices (GI), respectively. A cleaved amplified polymorphism sequence marker Sdr2B was developed based on the SNP, and subsequently functional analysis of TaSdr-B1 was conducted by association and linkage mapping. A QTL for GI co-segregating with Sdr2B explained 6.4, 7.8 and 8.7 % of the phenotypic variances in a RIL population derived from Yangxiaomai/Zhongyou 9507 grown in Shijiazhuang, Beijing and the averaged data from those environments, respectively. Two sets of Chinese wheat cultivars were used for association mapping, and results indicated that TaSdr-B1 was significantly associated with GI. Analysis of the allelic distribution at the TaSdr-B1 locus showed that the frequencies of TaSdr-B1a associated with a lower GI were high in cultivars from Japan, Australia, Argentina, and the Middle and Lower Yangtze Valley Winter Wheat Region and Southwest Winter Wheat Region in China. This study provides not only a reliable functional marker for molecular-assisted selection of PHS in wheat breeding programs, but also gives novel information for a comprehensive understanding of seed dormancy.  相似文献   

10.

Main conclusion

Whole-genome re-sequencing of weedy rice from southern China reveals that weedy rice can originate from hybridization of domesticated indica and japonica rice.

Abstract

Weedy rice (Oryza sativa f. spontanea Rosh.), which harbors phenotypes of both wild and domesticated rice, has become one of the most notorious weeds in rice fields worldwide. While its formation is poorly understood, massive amounts of rice genomic data may provide new insights into this issue. In this study, we determined genomes of three weedy rice samples from the lower Yangtze region, China, and investigated their phylogenetics, population structure and chromosomal admixture patterns. The phylogenetic tree and principle component analysis based on 46,005 SNPs with 126 other Oryza accessions suggested that the three weedy rice accessions were intermediate between japonica and indica rice. An ancestry inference study further demonstrated that weedy rice had two dominant genomic components (temperate japonica and indica). This strongly suggests that weedy rice originated from indica-japonica hybridization. Furthermore, 22,443 novel fixed single nucleotide polymorphisms were detected in the weedy genomes and could have been generated after indica-japonica hybridization for environmental adaptation.  相似文献   

11.

Key message

Using association and linkage mapping, two SNP markers closely linked to the SBWMV resistance gene on chromosome 5D were identified and can be used to select the gene in breeding.

Abstract

Soil-borne wheat mosaic virus (SBWMV) disease is a serious viral disease of winter wheat growing areas worldwide. SBWMV infection can significantly reduce grain yield up to 80 %. Developing resistant wheat cultivars is the only feasible strategy to reduce the losses. In this study, wheat Infinium iSelect Beadchips with 9 K wheat SNPs were used to genotype an association mapping population of 205 wheat accessions. Six new SNPs from two genes were identified to be significantly associated with the gene for SBWMV resistance on chromosome 5D. The SNPs and Xgwm469, an SSR marker that has been reported to be associated with the gene, were mapped close to the gene using F6-derived recombinant inbred lines from the cross between a resistant parent ‘Heyne’ and a susceptible parent ‘Trego’. Two representative SNPs, wsnp_CAP11_c209_198467 and wsnp_JD_c4438_5568170, from the two linked genes in wheat were converted into KBioscience Competitive Allele-Specific Polymerase assays and can be easily used in marker-assisted selection to improve wheat resistance to SBWMV in breeding.  相似文献   

12.

Background

The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set.

Results

In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method P athway A nalysis with D own-weighting of O verlapping G enes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results.

Conclusions

PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org.  相似文献   

13.

Key message

We have developed sex-specific SCAR marker for the identification of dioecious Garcinia gummi - gutta (L.), which is useful for the selection of G. gummi - gutta at seedling stage and for plantation programmes.

Abstract

Garcinia gummi-gutta (L.) Robs. is a dioecious fruit yielding tree, which is naturally distributed as well as cultivated in the orchards in Western Ghat regions of India. A sex-linked DNA fragment was identified in Garcinia gummi-gutta (L.) Robs. by screening 150 randomly amplified polymorphic DNA primers and only one of them (OPBD20) showed different amplification band pattern associated with sex type. This sex-linked fragment was converted into male-specific sequence-characterized amplified region (SCAR) marker, CAM-566. The primers deigned in this study (OPBD20F and OPBD20R) correctly differentiated 12 male and 12 female plants at high annealing temperatures. Thus, a 556-bp band was amplified in male samples but not in female ones. Nevertheless, it should be noted that the fragments from both sexes were amplified at relatively low annealing temperatures. Additionally, the developed SCAR marker successfully identified the sexes of ten sex-unknown samples. Therefore, it can be used as an effective, convenient and reliable tool for sex determination in such dioecious species.  相似文献   

14.

Key message

Sequence analysis and genetic mapping revealed that a 1,444 bp deletion causes a premature stop codon in SbBADH2 of sorghum IS19912. The non-function of SbBADH2 is responsible for fragrance in sorghum IS19912.

Abstract

2-acetyl-1-pyrroline (2AP) is a potent volatile compound causing fragrance in several plants and foods. Seeds of some varieties of rice, sorghum and soybean possess fragrance. The genes responsible for fragrance in rice and soybean are orthologs that correspond to betaine aldehyde dehydrogenase 2 (BADH2). Genotypes harboring fragrance in rice and soybean contain a premature stop codon in BADH2 which impairs the synthesis of full length functional BADH2 protein leading to the accumulation of 2AP. In this study, we reported an association between the BADH2 gene and fragrance in sorghum. An F2 population of 187 plants developed from a cross between KU630 (non-fragrant) and IS19912 (fragrant) was used. Leaves of F2 and F3 progenies were evaluated for fragrance by organoleptic test, while seeds of F2 plants were analyzed for 2AP. The tests consistently showed that the fragrance is controlled by a single recessive gene. Gene expression analysis of SbBADH1 and SbBADH2 in leaves of KU630 and IS19912 at various stages revealed that SbBADH1 and SbBADH2 were expressed in both accessions. Sequence comparison between KU630 and IS19912 revealed a continuous 1,444 bp deletion encompassing exon 12 to 15 of SbBADH2 in IS19912 which introduces a frameshift mutation and thus causes a premature stop codon. An indel marker was developed to detect polymorphism in SbBADH2. Bulk segregant and QTL analyses confirmed the association between SbBADH2 and fragrance.  相似文献   

15.

Key message

Identified SSR markers ( Xcfd49 and Xbarc183 ) linked with stem rust resistance for efficient use in marker-assisted selection and stacking of resistance genes in wheat breeding programs.

Abstract

More than 80 % of the worldwide wheat (Triticum aestivum L.) area is currently sown with varieties susceptible to the Ug99 race group of stem rust fungus. However, wheat lines Niini, Tinkio, Coni, Pfunye, Blouk, and Ripper have demonstrated Ug99 resistance at the seedling and adult plant stages. We mapped stem rust resistance in populations derived from crosses of a susceptible parent with each of the resistant lines. The segregation of resistance in each population indicated the presence of a single gene. The resistance gene in Niini mapped to short arm of chromosome 6D and was flanked by SSR markers Xcfd49 at distances of 3.9 cM proximal and Xbarc183 8.4 cM distal, respectively. The chromosome location of this resistance was validated in three other populations: PBW343/Coni, PBW343/Tinkio, and Cacuke/Pfunye. Resistance initially postulated to be conferred by the SrTmp gene in Blouk and Ripper was also linked to Xcfd49 and Xbarc183 on 6DS, but it was mapped proximal to Xbarc183 at a similar position to previously mapped genes Sr42 and SrCad. Based on the variation in diagnostic marker alleles, it is possible that Niini and Pfunye may carry different resistance genes/alleles. Further studies are needed to determine the allelic relationships between various genes located on chromosome arm 6DS. Our results provide valuable molecular marker and genetic information for developing Ug99 resistant wheat varieties in diverse germplasm and using these markers to tag the resistance genes in wheat breeding.  相似文献   

16.
17.

Key message

Japonica and indica have different non-host resistance (NHR) abilities to Puccinia striiformis f. sp. tritici ( Pst ), and hydrogen peroxide (H 2 O 2 ) has a positive function in NHR to japonica against Pst.

Abstract

Non-host interactions between Puccinia striiformis f. sp. tritici (Pst) and two rice subspecies were characterized using 23 rice varieties, including 11 japonica and 12 indica. Results showed that the infected fungal structures were easily produced in the leaves of indica, whereas only several substomatal vesicles and primary infection hyphae were observed in the leaves of japonica. This result indicated that indica is less resistant or more susceptible to Pst than japonica. Hydrogen peroxide accumulated in the initial phase of japonicaPst interaction but not in indicaPst interaction. A set of reactive oxygen species (ROS)-related genes was also induced in response to Pst infection, suggesting that ROS activation is one of the major mechanisms of non-host resistance of rice to Pst.  相似文献   

18.

Key message

Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed candidate genes underlying the major QTL for Phytophthora capsici resistance in Capsicum . Using the candidate genes, reliable markers for Phytophthora resistance were developed and validated.

Abstract

Phytophthora capsici L. is one of the most destructive pathogens of pepper (Capsicum spp.). Resistance of pepper against P. capsici is controlled by quantitative trait loci (QTL), including a major QTL on chromosome 5 that is the predominant contributor to resistance. Here, to maximize the effect of this QTL and study its underlying genes, an F2 population and recombinant inbred lines were inoculated with P. capsici strain JHAI1-7 zoospores at a low concentration (3 × 103/mL). Resistance phenotype segregation ratios for the populations fit a 3:1 and 1:1 (resistant:susceptible) segregation model, respectively, consistent with a single dominant gene model. Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed a single position polymorphism (SPP) marker mapping to the major QTL. When this SPP marker (Phyto5SAR) together with other SNP markers located on chromosome 5 was used to confirm the position of the major QTL, Phyto5SAR showed the highest LOD value at the QTL. A scaffold sequence (scaffold194) containing Phyto5SAR was identified from the C. annuum genome database. The scaffold contained two putative NBS-LRR genes and one SAR 8.2A gene as candidates for contributing to P. capsici resistance. Markers linked to these genes were developed and validated by testing 100 F1 commercial cultivars. Among the markers, Phyto5NBS1 showed about 90 % accuracy in predicting resistance phenotypes to a low-virulence P. capsici isolate. These results suggest that Phyto5NBS1 is a reliable marker for P. capsici resistance and can be used for identification of a gene(s) underlying the major QTL on chromosome 5.  相似文献   

19.

Key message

Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement.

Abstract

Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum). Two wheat protoplast populations, one derived from embryogenic calli and the other from a non-regenerable, rapidly dividing cell line, were fused with Th. intermedium protoplasts which had been (or not been) pre-irradiated with UV. Among the 124 regenerated calli, 64 could be categorized as being of hybrid origin on the basis of plant morphology, peroxidase isozyme, RAPD DNA profiling and karyological analysis. Numerous green plantlets were regenerated from 13 calli recovered from either the symmetric hybrid (no UV pre-treatment) or the asymmetric one (30 s UV irradiation). One of these hybrid plants proved to be vigorous and self-fertile. The regenerants were all closer in phenotype to wheat than to Th. intermedium. Genomic in situ hybridization analysis showed that the chromosomes in the hybrids were largely intact wheat ones, although a few Th. intermedium chromosome fragments had been incorporated within them.  相似文献   

20.

Key message

Fine mapping of the Ug99 effective stem rust resistance gene Sr45 introgressed into common wheat from the D -genome goatgrass Aegilops tauschii.

Abstract

Stem rust resistance gene Sr45, discovered in Aegilops tauschii, the progenitor of the D -genome of wheat, is effective against commercially important Puccinia graminis f. sp. tritici races prevalent in Australia, South Africa and the Ug99 race group. A synthetic hexaploid wheat (RL5406) generated by crossing Ae. tauschii accession RL5289 (carrying Sr45 and the leaf rust resistance gene Lr21) with a tetraploid experimental line ‘TetraCanthatch’ was previously used as the source in the transfer of these rust resistance genes to other hexaploid cultivars. Previous genetic studies on hexaploid wheats mapped Sr45 on the short arm of chromosome 1D with the following gene order: centromere–Sr45Sr33Lr21–telomere. To identify closely linked markers, we fine mapped the Sr45 region in a large mapping population generated by crossing CS1D5406 (disomic substitution line with chromosome 1D of RL5406 substituted for Chinese Spring 1D) with Chinese Spring. Closely linked markers based on 1DS-specific microsatellites, expressed sequence tags and AFLP were useful in the delineation of the Sr45 region. Sequences from an AFLP marker amplified a fragment that was linked with Sr45 at a distance of 0.39 cM. The fragment was located in a bacterial artificial chromosome clone of contig (ctg)2981 of the Ae. tauschii accession AL8/78 physical map. A PCR marker derived from clone MI221O11 of ctg2981 amplified 1DS-specific sequence that harboured an 18-bp indel polymorphism that specifically tagged the Sr45 carrying haplotype. This new Sr45 marker can be combined with a previously reported marker for Lr21, which will facilitate selecting Sr45 and Lr21 in breeding populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号